
Network Working Group G. D. Marco
Internet-Draft Dipartimento per la trasformazione digitale
Intended status: Informational O. Steele
Expires: 20 October 2024 Transmute
 F. Marino
 Istituto Poligrafico e Zecca dello Stato
 18 April 2024

 OAuth Status Attestations
 draft-demarco-oauth-status-attestations-01

Abstract

 Status Attestation is a signed object that demonstrates the validity
 status of a digital credential. These attestations are periodically
 provided to holders, who can present these to Verifiers along with
 the corresponding digital credentials. The approach outlined in this
 document makes the verifiers able to check the non-revocation of a
 digital credential without requiring to query any third-party
 entities.

About This Document

 This note is to be removed before publishing as an RFC.

 The latest revision of this draft can be found at
 https://peppelinux.github.io/draft-demarco-status-attestations/draft-
 demarco-status-attestations.html. Status information for this
 document may be found at https://datatracker.ietf.org/doc/draft-
 demarco-oauth-status-attestations/.

 Source for this draft and an issue tracker can be found at
 https://github.com/peppelinux/draft-demarco-status-attestations.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Marco, et al. Expires 20 October 2024 [Page 1]

Internet-Draft OAuth Status Attestations April 2024

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 20 October 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Conventions and Definitions 4
 3. Terminology . 4
 4. Rationale . 4
 5. Requirements . 6
 6. Proof of Possession of a Credential 7
 7. Status Attestation Request 8
 7.1. Status Attestation Request Errors 9
 7.2. Digital Credential Proof of Possession 9
 8. Status Attestation . 11
 9. Status Attestation Response 13
 10. Credential Issuers Supporting Status Attestations 14
 10.1. Credential Issuer Metadata 14
 10.2. Issued Digital Credentials 14
 10.2.1. Credential Issuer Implementation Considerations . . 15
 11. Presenting Status Attestations 16
 12. Security Considerations 16
 13. Privacy Considerations 17
 13.1. Privacy Consideration: Status Attestation Request
 Opacity . 17
 13.2. Privacy Consideration: Opacity of Status Attestation
 Content . 17
 13.3. Unlinkability and Reusability of Status Attestations . . 18
 13.4. Untrackability by Digital Credential Issuers and the
 "Phone Home" Problem 18

Marco, et al. Expires 20 October 2024 [Page 2]

Internet-Draft OAuth Status Attestations April 2024

 13.5. Minimization of Data Exposure 19
 13.6. Resistance to Enumeration Attacks 19
 14. IANA Considerations . 19
 14.1. JSON Web Token Claims Registration 19
 14.2. Media Type Registration 20
 15. Normative References . 22
 Appendix A. Acknowledgments 23
 Appendix B. Document History 23
 Authors’ Addresses . 23

1. Introduction

 Status Attestations ensure the integrity and trustworthiness of
 digital credentials, whether in JSON Web Tokens (JWT) or CBOR Web
 Tokens (CWT) format, certifying their validity and non-revocation
 status. They function similarly to OCSP Stapling, allowing wallet
 instances to present time-stamped attestations from the Credential
 Issuer. The approach defined in this specification allows the
 verification of credentials against any revocation, without direct
 queries to the issuer, enhancing privacy, reducing latency, and
 enabling offline verification. Essential for offline scenarios,
 Status Attestations validate digital credentials’ validity, balancing
 scalability, security, and privacy without internet connectivity.

 +-----------------+ +-------------------+
	Requests Status Attestation	
	---------------------------->	
Wallet Instance		Credential Issuer
	Status Attestation	
	<----------------------------	
 +-----------------+ +-------------------+

 Figure 1: Status Attestation Issuance Flow

 This figure illustrates the process by which a Wallet Instance
 requests a Status Attestation from the Credential Issuer and
 subsequently receives it.

 +-- ----------------+ +----------+
	Presents Digital Credential	
Wallet Instance	and Status Attestation	Verifier
	---------------------------->	
 +-------------------+ +----------+

 Figure 2: Status Attestation Presentation Flow

Marco, et al. Expires 20 October 2024 [Page 3]

Internet-Draft OAuth Status Attestations April 2024

 The Status Attestation is presented along with its digital
 credential, to prove the non-revocation status of a digital
 credential to a Verifier.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Terminology

 This specification uses the terms "End-User", "Entity" as defined by
 OpenID Connect Core [@OpenID.Core], the term "JSON Web Token (JWT)"
 defined by JSON Web Token (JWT) [RFC7519].

 Digital Credential: A set of one or more claims about a subject made
 by a Credential Issuer.

 Credential Issuer: Entity that is responsible for the issuance of
 the Digital Credentials. The Issuer is responsible for the
 lifecycle of their issued Digital Credentials and their validity
 status.

 Verifier: Entity that relies on the validity of the Digital
 Credentials presented to it. This Entity, also known as a Relying
 Party, verifies the authenticity and validity of the Digital
 Credentials, including their revocation status, before accepting
 them.

 Wallet Instance: The digital Wallet in control of a User, also known
 as Wallet or Holder. It securely stores the User’s Digital
 Credentials. It can present Digital Credentials to Verifiers and
 request Status Attestations from Issuers under the control of the
 User.

4. Rationale

 OAuth Status Lists [@!I-D.looker-oauth-jwt-cwt-status-list] are
 suitable for specific scenarios, especially when the Verifier needs
 to verify the status of a Digital Credential at a later time after
 the User has presented the Digital Credential.

Marco, et al. Expires 20 October 2024 [Page 4]

Internet-Draft OAuth Status Attestations April 2024

 However, there are cases where the Verifier only needs to check the
 revocation status of a Digital Credential at the time of
 presentation, or situations where the Verifier should not be allowed
 to check the status of a Digital Credential over time due to some
 privacy constraints, in compliance with national privacy regulations.

 For instance, consider a scenario under the European Union’s General
 Data Protection Regulation (GDPR), where a Verifier’s repeated access
 to a Status List to check the revocation status of a Digital
 Credential could be deemed as excessive monitoring of the End-User’s
 activities. This could potentially infringe upon the End-User’s
 right to privacy, as outlined in Article 8 of the European Convention
 on Human Rights, by creating a detailed profile of the End-User’s
 interactions and credential usage without explicit consent for such
 continuous surveillance.

 In scenarios where the Verifier, Credential Issuer, and OAuth Status
 List Provider are all part of the same domain or operate within a
 context where a high level of trust exists between them and the End-
 User, the OAuth Status List is the optimal solution; while there
 might be other cases where the OAuth Status List facilitates the
 exposure to the following privacy risks:

 * An OAuth Status List Provider might know the association between a
 specific list and a Credential Issuer, especially if the latter
 issues a single type of Digital Credential. This could
 inadvertently reveal the Status List Provider which list
 corresponds to which Digital Credential.

 * A Verifier retrieves an OAuth Status List by establishing a TCP/IP
 connection with an OAuth Status List Provider. This allows the
 OAuth Status List Provider to obtain the IP address of the
 Verifier and potentially link it to a specific Digital Credential
 type and Credential Issuer associated with that OAuth Status List.
 A malicious OAuth Status List Provider could use internet
 diagnostic tools, such as Whois or GeoIP lookup, to gather
 additional information about the Verifier. This could
 inadvertently disclose to the OAuth Status List Provider which
 Digital Credential the requester is using and from which
 Credential Issuer, information that should remain confidential.

 Status Attestations differ significantly from OAuth Status Lists in
 several ways:

 1. *Privacy*: Status Attestations are designed to be privacy-
 preserving. They do not require the Verifier to gather any
 additional information from third-party entities, thus preventing
 potential privacy leaks.

Marco, et al. Expires 20 October 2024 [Page 5]

Internet-Draft OAuth Status Attestations April 2024

 2. *Static Verification*: Status Attestations are designed to be
 statically provided to Verifiers by Wallet Instance. Once a
 Status Attestation is issued, it can be verified without any
 further communication with the Credential Issuer or any other
 party.

 3. *Digital Credentials Formats*: Status Attestations are agnostic
 from the Digital Credential format to which they are bound.

 4. *Trust Model*: Status Attestations operate under a model where
 the Verifier trusts the Credential Issuer to provide accurate
 status information, while the OAuth Status Lists operate under a
 model where the Verifier trusts the Status List Provider to
 maintain an accurate and up-to-date list of statuses.

 5. *Offline flow*: OAuth Status List can be accessed by a Verifier
 when an internet connection is present. At the same time, OAuth
 Status List defines how to provide a static Status List Token, to
 be included within a Digital Credential. This requires the
 Wallet Instance to acquire a new Digital Credential for a
 specific presentation. Even if similar to the OAuth Status List
 Token, the Status Attestations enable the User to persistently
 use their preexistent Digital Credentials, as long as the linked
 Status Attestation is available and presented to the Verifier,
 and not expired.

5. Requirements

 The general requirements for the implementation of Status Attestation
 are listed in this section. The Status Attestation:

 * MUST be presented in conjunction with the Digital Credential. The
 Status Attestation MUST be timestamped with its issuance datetime,
 always referring to a previous period to the presentation time.

 * MUST contain the expiration datetime after which the Digital
 Credential MUST NOT be considered valid anymore. The expiration
 datetime MUST be superior to the issuance datetime.

 * enables offline use cases as it MUST be validated using a
 cryptographic signature and the cryptographic public key of the
 Credential Issuer.

Marco, et al. Expires 20 October 2024 [Page 6]

Internet-Draft OAuth Status Attestations April 2024

 Please note: in this specification the examples and the normative
 properties of Attestations are reported in accordance with the JWT
 standard, while for the purposes of this specification any Digital
 Credential or Attestation format may be used, as long as all
 attributes and requirements defined in this specification are
 satisfied, even using equivalent names or values.

6. Proof of Possession of a Credential

 The concept of Proof of Possession (PoP) of a Credential within the
 framework of the Status Attestation specification encompasses a
 broader perspective than merely possessing the digital bytes of the
 Credential. It involves demonstrating rightful control or ownership
 over the Credential, which can manifest in various forms depending on
 the technology employed and the nature of the digital Credential
 itself. For instance, a Credential could be presented visually (de-
 visu) with a personal portrait serving as a binding element.

 While this specification does not prescribe any additional methods
 for the proof of possession of the Credential, it aims to offer
 guidance for concrete implementations utilizing common proof of
 possession mechanisms. This includes, but is not limited to:

 1. Having the digital representation of the credential (the bytes).

 2. Controlling a private key that corresponds to a public key
 associated with the Credential, often indicated within the
 Credential’s cnf (confirmation) claim or through a similar
 mechanism.

 The essence of requiring control over the private key and its
 demonstration through a cryptographic operation (e.g., signing a
 challenge or a token) is to ensure that the entity in possession of
 the Credential can execute actions exclusively reserved for the
 legitimate subject. The dual-layered approach of requiring both
 possession of the Credential and control over the corresponding
 private key indeed reinforces the security and integrity of the
 status attestation process. It also ensures that the entity
 requesting a Status Attestation is indeed the same entity to which
 the Credential was originally issued, affirming the authenticity and
 rightful possession of the Credential.

Marco, et al. Expires 20 October 2024 [Page 7]

Internet-Draft OAuth Status Attestations April 2024

7. Status Attestation Request

 The Credential Issuer provides the Wallet Instance with a Status
 Attestation, which is bound to a Digital Credential. This allows the
 Wallet Instance to present it, along with the Digital Credential
 itself, to a Verifier as proof of the Digital Credential’s non-
 revocation status.

 The following diagram shows the Wallet Instance requesting a Status
 Attestation to a Credential Issuer, related to a specific Credential
 issued by the same Credential Issuer.

 +-------------------+ +--------------------+
Wallet Instance		Credential Issuer
 +--------+----------+ +----------+---------+
 | |
 | HTTP POST /status |
 | credential_pop = $CredentialPoPJWT |
 +--->
 | |
 | Response with Status Attestation JWT |
 <---+
 | |
 +--------+----------+ +----------+---------+
Wallet Instance		Credential Issuer
 +-------------------+ +--------------------+

 The Wallet Instance sends the Status Attestation request to the
 Credential Issuer. The request MUST contain the base64url hash value
 of the Digital Credential, for which the Status Attestation is
 requested, and enveloped in a signed object as proof of possession.
 The proof of possession MUST be signed with the private key
 corresponding to the public key attested by the Credential Issuer and
 contained within the Digital Credential.

 POST /status HTTP/1.1
 Host: issuer.example.org
 Content-Type: application/x-www-form-urlencoded

 credential_pop=$CredentialPoPJWT

 To validate that the Wallet Instance is entitled to request its
 Status Attestation, the following requirements MUST be satisfied:

Marco, et al. Expires 20 October 2024 [Page 8]

Internet-Draft OAuth Status Attestations April 2024

 * The Credential Issuer MUST verify the signature of the
 credential_pop object using the public key contained in the
 Digital Credential;

 * the Credential Issuer MUST verify that it is the legitimate
 Issuer.

 The technical and details about the credential_pop object are defined
 in the next section.

7.1. Status Attestation Request Errors

 In cases where a Status Attestation request is made for a Digital
 Credential that does not exist, has expired, been revoked, or is in
 any way invalid, or if the HTTP Request is compromised by missing or
 incorrect parameters, the Credential Issuer is required to respond
 with an HTTP Response. This response should have a status code of
 400 and use application/json as the content type, including the
 following parameters:

 * error, REQUIRED. The value must be assigned one of the error
 types as specified in the OAuth 2.0 RFC Section 5.2
 (https://tools.ietf.org/html/rfc6749#section-5.2);

 * error_description, OPTIONAL. Text in human-readable form that
 offers more details to clarify the nature of the error encountered
 (for instance, changes in some attributes, reasons for revocation,
 other).

 Below a non-normative example of an HTTP Response with an error.

 HTTP/1.1 400 Bad Request
 Content-Type: application/json;charset=UTF-8

 {
 "error":"invalid_request"
 "error_description": "The signature of credential_pop JWT is not valid"
 }

7.2. Digital Credential Proof of Possession

 The Wallet Instance that holds a Digital Credential, when requests a
 Status Attestation, MUST demonstrate the proof of possession of the
 Digital Credential to the Credential Issuer.

 The proof of possession is made by enclosing the Digital Credential
 in an object (JWT) signed with the private key that its related
 public key is referenced in the Digital Credential.

Marco, et al. Expires 20 October 2024 [Page 9]

Internet-Draft OAuth Status Attestations April 2024

 Below is a non-normative example of a Credential proof of possession
 with the JWT headers and payload are represented without applying
 signature and encoding, for better readability:

 {
 "alg": "ES256",
 "typ": "status-attestation-request+jwt",
 "kid": $CREDENTIAL-CNF-JWKID
 }
 .
 {
 "iss": "0b434530-e151-4c40-98b7-74c75a5ef760",
 "aud": "https://issuer.example.org/status-attestation-endpoint",
 "iat": 1698744039,
 "exp": 1698834139,
 "jti": "6f204f7e-e453-4dfd-814e-9d155319408c",
 "credential_hash": $Issuer-Signed-JWT-Hash
 "credential_hash_alg": "sha-256",
 }

 When the JWT format is used, the JWT MUST contain the parameters
 defined in the following table.

 +========+==+===========+
 | JOSE | Description | Reference |
 | Header | | |
 +========+==+===========+
 | *typ* | It MUST be set to status-attestation- | [RFC7516] |
 | | request+jwt | Section |
 | | | 4.1.1 |
 +--------+--+-----------+
 | *alg* | A digital signature algorithm identifier | [RFC7516] |
 | | such as per IANA "JSON Web Signature and | Section |
 | | Encryption Algorithms" registry. It | 4.1.1 |
 | | MUST NOT be set to none or any symmetric | |
 | | algorithm (MAC) identifier. | |
 +--------+--+-----------+
 | *kid* | Unique identifier of the JWK used for | [RFC7515] |
 | | the signature of the Status Attestation | |
 | | Request, it MUST match the one contained | |
 | | in the Credential cnf.jwk. | |
 +--------+--+-----------+

 Table 1

Marco, et al. Expires 20 October 2024 [Page 10]

Internet-Draft OAuth Status Attestations April 2024

 +=======================+==========================+===============+
 | JOSE Payload | Description | Reference |
 +=======================+==========================+===============+
 | *iss* | Wallet identifier. | [RFC9126], |
 | | | [RFC7519] |
 +-----------------------+--------------------------+---------------+
aud	It MUST be set with the	[RFC9126],
	Credential Issuer Status	[RFC7519]
	Attestation endpoint URL	
	as value that identify	
	the intended audience	
+-----------------------+--------------------------+---------------+		
exp	UNIX Timestamp with the	[RFC9126],
	expiration time of the	[RFC7519]
	JWT.	
+-----------------------+--------------------------+---------------+		
iat	UNIX Timestamp with the	[RFC9126],
	time of JWT issuance.	[RFC7519]
+-----------------------+--------------------------+---------------+		
jti	Unique identifier for	[RFC7519]
	the JWT.	Section 4.1.7
+-----------------------+--------------------------+---------------+		
credential_hash	Hash value of the	this
	Digital Credential the	specification
	Status Attestation is	
	bound to.	
+-----------------------+--------------------------+---------------+		
credential_hash_alg	The Algorithm used of	this
	hashing the Digital	specification
	Credential to which the	
	Status Attestation is	
	bound. The value SHOULD	
	be set to sha-256.	
 +-----------------------+--------------------------+---------------+

 Table 2

8. Status Attestation

 When a Status Attestation is requested to a Credential Issuer, the
 Issuer checks the status of the Digital Credential and creates a
 Status Attestation bound to it.

 If the Digital Credential is valid, the Credential Issuer creates a
 new Status Attestation, which a non-normative example is given below.

Marco, et al. Expires 20 October 2024 [Page 11]

Internet-Draft OAuth Status Attestations April 2024

 {
 "alg": "ES256",
 "typ": "status-attestation+jwt",
 "kid": $ISSUER-JWKID
 }
 .
 {
 "iss": "https://issuer.example.org",
 "iat": 1504699136,
 "exp": 1504700136,
 "credential_hash": $CREDENTIAL-HASH,
 "credential_hash_alg": "sha-256",
 "cnf": {
 "jwk": {...}
 }
 }

 The Status Attestation MUST contain the following claims when the JWT
 format is used.

 +========+==+===============+
 | JOSE | Description | Reference |
 | Header | | |
 +========+==+===============+
alg	A digital signature algorithm	[RFC7515],
	identifier such as per IANA "JSON	[RFC7517]
	Web Signature and Encryption	
	Algorithms" registry. It MUST NOT	
	be set to none or to a symmetric	
	algorithm (MAC) identifier.	
+--------+--+---------------+		
typ	It MUST be set to status-	[RFC7515],
	attestation+jwt.	[RFC7517] and
		this
		specification
+--------+--+---------------+		
kid	Unique identifier of the Issuer	[RFC7515]
	JWK.	
 +--------+--+---------------+

 Table 3

Marco, et al. Expires 20 October 2024 [Page 12]

Internet-Draft OAuth Status Attestations April 2024

 +=======================+==========================+===============+
 | JOSE Payload | Description | Reference |
 +=======================+==========================+===============+
iss	It MUST be set to the	[RFC9126],
	identifier of the	[RFC7519]
	Issuer.	
+-----------------------+--------------------------+---------------+		
iat	UNIX Timestamp with the	[RFC9126],
	time of the Status	[RFC7519]
	Attestation issuance.	
+-----------------------+--------------------------+---------------+		
exp	UNIX Timestamp with the	[RFC9126],
	expiry time of the	[RFC7519]
	Status Attestation.	
+-----------------------+--------------------------+---------------+		
credential_hash	Hash value of the	this
	Digital Credential the	specification
	Status Attestation is	
	bound to.	
+-----------------------+--------------------------+---------------+		
credential_hash_alg	The Algorithm used of	this
	hashing the Digital	specification
	Credential to which the	
	Status Attestation is	
	bound. The value SHOULD	
	be set to sha-256.	
+-----------------------+--------------------------+---------------+		
cnf	JSON object containing	[RFC7800]
	the cryptographic key	Section 3.1
	binding. The cnf.jwk	
	value MUST match with	
	the one provided within	
	the related Digital	
	Credential.	
 +-----------------------+--------------------------+---------------+

 Table 4

9. Status Attestation Response

 If the Status Attestation is requested for a non-existent, expired,
 revoked or invalid Digital Credential, the Credential Issuer MUST
 respond with an HTTP Response with the status code set to 404.

Marco, et al. Expires 20 October 2024 [Page 13]

Internet-Draft OAuth Status Attestations April 2024

 If the Digital Credential is valid, the Credential Issuer MUST return
 an HTTP status code of 201 (Created), with the content type set to
 application/json. The response MUST include a JSON object with a
 member named status_attestation, which contains the Status
 Attestation for the Wallet Instance, as illustrated in the following
 non-normative example:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "status_attestation": "eyJhbGciOiJFUzI1Ni ...",
 }

10. Credential Issuers Supporting Status Attestations

 This section outlines how Credential Issuers support Status
 Attestations, detailing the necessary metadata and practices to
 integrate into their systems.

10.1. Credential Issuer Metadata

 The Credential Issuers that uses the Status Attestations MUST include
 in their OpenID4VCI [@!OpenID.VCI] metadata the claims:

 * status_attestation_endpoint. REQUIRED. It MUST be an HTTPs URL
 indicating the endpoint where the Wallet Instances can request
 Status Attestations.

 * credential_hash_alg_supported. REQUIRED. The supported Algorithm
 used by the Wallet Instance to hash the Digital Credential for
 which the Status Attestation is requested, using one of the hash
 algorithms listed in the IANA - Named Information Hash Algorithm
 Registry (https://www.iana.org/assignments/named-information/
 named-information.xhtml#hash-alg).

10.2. Issued Digital Credentials

 The Credential Issuers that uses the Status Attestations SHOULD
 include in the issued Digital Credentials the object status with the
 JSON member status_attestation set to a JSON Object containing the
 following member:

Marco, et al. Expires 20 October 2024 [Page 14]

Internet-Draft OAuth Status Attestations April 2024

 * credential_hash_alg. REQUIRED. The Algorithm used of hashing the
 Digital Credential to which the Status Attestation is bound, using
 one of the hash algorithms listed in the IANA - Named Information
 Hash Algorithm Registry (https://www.iana.org/assignments/named-
 information/named-information.xhtml#hash-alg). Among the hash
 algorithms, sha-256 is recommended and SHOULD be implemented by
 all systems.

 The non-normative example of an unsecured payload of an SD-JWT VC is
 shown below.

 {
 "vct": "https://credentials.example.com/identity_credential",
 "given_name": "John",
 "family_name": "Doe",
 "email": "johndoe@example.com",
 "phone_number": "+1-202-555-0101",
 "address": {
 "street_address": "123 Main St",
 "locality": "Anytown",
 "region": "Anystate",
 "country": "US"
 },
 "birthdate": "1940-01-01",
 "is_over_18": true,
 "is_over_21": true,
 "is_over_65": true,
 "status": {
 "status_attestation": {
 "credential_hash_alg": "sha-256",
 }
 }
 }

10.2.1. Credential Issuer Implementation Considerations

 When the Digital Credential is issued, the Credential Issuer SHOULD
 calculate the hash value using the algorithm specified in
 status.status_attestation.credential_hash_alg and store this
 information in its database. This practice enhances efficiency by
 allowing the Credential Issuer to quickly compare the requested
 ‘credential_hash with the pre-calculated one, when processing Status
 Attestation requests made by Holders.

Marco, et al. Expires 20 October 2024 [Page 15]

Internet-Draft OAuth Status Attestations April 2024

11. Presenting Status Attestations

 The Wallet Instance that provides the Status Attestations using
 [@OpenID4VP], SHOULD include in the vp_token JSON array, as defined
 in [@OpenID4VP], the Status Attestation along with the related
 Digital Credential.

 The Verifier that receives a Digital Credential supporting the Status
 Attestation, SHOULD:

 * Decode and validate the Digital Credential;

 * check the presence of status.status_attestation in the Digital
 Credential. If true, the Verifier SHOULD:

 - produce the hash of the Digital Credential using the hashing
 algorithm configured in
 status.status_attestation.credential_hash_alg;

 - decode all the Status Attestations provided in the
 presentation, by matching the JWS Header parameter typ set to
 status-attestation+jwt and looking for the credential_hash
 value that matches with the hash produced at the previous
 point;

 - evaluate the validity of the Status Attestation.

 Please note: The importance of checking the revocation status of
 Digital Credentials as a ’SHOULD’ rather than a ’MUST’ for a Verifier
 who gets Status Attestation for the Digital Credential stems from the
 fact that the decision of a Verifier to check the revocation status
 of Digital Credentials is not absolute and can be influenced by
 numerous variables. Consider as an example the case of age-over x;
 even if it has expired, it may still perform its intended purpose.
 As a result, the expiration status alone does not render it invalid.
 The adaptability recognizes that the need to verify revocation status
 may not always coincide with the actual usability of a Digital
 Credential, allowing Verifiers to examine and make educated
 conclusions based on a variety of scenarios.

12. Security Considerations

 TODO Security

Marco, et al. Expires 20 October 2024 [Page 16]

Internet-Draft OAuth Status Attestations April 2024

13. Privacy Considerations

 In the design and implementation of Status Attestations, particular
 attention has been paid to privacy considerations to ensure that the
 system is respectful of user privacy and compliant with relevant
 regulations.

13.1. Privacy Consideration: Status Attestation Request Opacity

 The request for a status attestation does not transmit the digital
 credential for which the status is being attested. Instead, it
 includes a proof of possession (PoP) of the credential that is only
 interpretable by the credential issuer who issued the digital
 credential for which the status attestation is requested. This PoP
 can be achieved through a cryptographic signature using the public
 key contained within the digital credential over the request. This
 method is essential for preventing the potential for fraudulent
 requests intended to mislead or disclose sensitive information to
 unintended parties. By separating the digital credential from the
 status attestation request, the system ensures that the request does
 not inadvertently disclose any information about the digital
 credential or its holder. This strategy significantly enhances the
 privacy and security of the system by preventing the attestation
 process from being used to collect information about digital
 credentials or their holders through deceptive requests.

13.2. Privacy Consideration: Opacity of Status Attestation Content

 An important privacy consideration is how the status attestation is
 structured to ensure it does not reveal any information about the
 user or the holder of the digital credential. The status attestation
 is crafted to prove only the vital information needed to verify the
 current state of a digital credential, moving beyond simple
 revocation or suspension checks. This is done by focusing the
 attestation content on the credential’s present condition and the
 method for its verification, rather than on the identity of the
 credential’s holder. This approach is key in keeping the user’s
 anonymity intact, making sure that the status attestation can be
 applied in various verification situations without risking the
 privacy of the people involved.

Marco, et al. Expires 20 October 2024 [Page 17]

Internet-Draft OAuth Status Attestations April 2024

13.3. Unlinkability and Reusability of Status Attestations

 Status Attestations are designed to uphold privacy by allowing
 verifiers to operate independently, without the need for interaction
 or information disclosure to third-party entities or other verifiers.
 This design is pivotal in ensuring unlinkability between verifiers,
 where actions taken by one verifier cannot be correlated or linked to
 actions taken by another. Verifiers can directly validate the status
 of a digital credential through the Status Attestation, eliminating
 the need for external communication. This mechanism is key in
 protecting the privacy of individuals whose credentials are being
 verified, as it significantly reduces the risk of tracking or
 profiling based on verification activities across various services.

 While Status Attestations facilitate unlinkability, they are not
 inherently "single use." The specification accommodates the batch
 issuance of multiple status attestations, which can be single-use.
 However, particularly for offline interactions, a single attestation
 may be utilized by numerous verifiers. This flexibility ensures that
 Status Attestations can support a wide range of verification
 scenarios, from one-time validations to repeated checks by different
 entities, without compromising the privacy or security of the
 credential holder.

13.4. Untrackability by Digital Credential Issuers and the "Phone Home"
 Problem

 A fundamental aspect of the privacy-preserving attributes of Status
 Attestations is their ability to address the "phone home" problem,
 which is the prevention of tracking by digital credential issuers.
 Traditional models often require verifiers to query a central status
 list or contact the issuer directly, a process that can inadvertently
 allow issuers to track when and where a digital credential is
 verified. Status Attestations, however, encapsulate all necessary
 verification information within the attestation itself. This design
 choice ensures that credential issuers are unable to monitor the
 verification activities of their issued digital credentials, thereby
 significantly enhancing the privacy of the credential holder. By
 removing the need for real-time communication with the issuer for
 status checks, Status Attestations effectively prevent the issuer
 from tracking verification activities, further reinforcing the
 system’s dedication to protecting user privacy.

Marco, et al. Expires 20 October 2024 [Page 18]

Internet-Draft OAuth Status Attestations April 2024

13.5. Minimization of Data Exposure

 The Status Attestations are designed around the data minimization
 principle. Data minimization ensures that only the necessary
 information required for the scope of attesting the non revocation
 status of the digital credential. This minimizes the exposure of
 potentially sensitive data.

13.6. Resistance to Enumeration Attacks

 The design of Status Attestations incorporates measures to resist
 enumeration attacks, where an adversary attempts to gather
 information by systematically verifying different combinations of
 data. By implementing robust cryptographic techniques and limiting
 the information contained in status attestations, the system reduces
 the feasibility of such attacks. This consideration is vital for
 safeguarding the privacy of the credential holders and for ensuring
 the integrity of the verification process.

 Status Attestations are based on a privacy-by-design approach,
 reflecting a deliberate effort to balance security and privacy needs
 in the Digital Credential ecosystem.

14. IANA Considerations

14.1. JSON Web Token Claims Registration

 This specification requests registration of the following Claims in
 the IANA "JSON Web Token Claims" registry [@IANA.JWT] established by
 [RFC7519].

 * Claim Name: credential_format

 * Claim Description: The Digital Credential format the Status
 Attestation is bound to.

 * Change Controller: IETF

 * Specification Document(s): [[(#digital-credential-proof-of-
 possession) of this specification]]

 * Claim Name: credential

 * Claim Description: The Digital Credential the Status Attestation
 is bound to.

Marco, et al. Expires 20 October 2024 [Page 19]

Internet-Draft OAuth Status Attestations April 2024

 * Change Controller: IETF

 * Specification Document(s): [[(#digital-credential-proof-of-
 possession) of this specification]]

 * Claim Name: credential_hash

 * Claim Description: Hash value of the Digital Credential the Status
 Attestation is bound to.

 * Change Controller: IETF

 * Specification Document(s): [[(#status-attestation) of this
 specification]]

 * Claim Name: credential_hash_alg

 * Claim Description: The Algorithm used of hashing the Digital
 Credential to which the Status Attestation is bound.

 * Change Controller: IETF

 * Specification Document(s): [[(#status-attestation) of this
 specification]]

14.2. Media Type Registration

 This section requests registration of the following media types
 [@RFC2046] in the "Media Types" registry [@IANA.MediaTypes] in the
 manner described in [@RFC6838].

 To indicate that the content is an JWT-based Status List:

 * Type name: application

 * Subtype name: status-attestation-request+jwt

 * Required parameters: n/a

 * Optional parameters: n/a

Marco, et al. Expires 20 October 2024 [Page 20]

Internet-Draft OAuth Status Attestations April 2024

 * Encoding considerations: binary; A JWT-based Status Attestation
 Request object is a JWT; JWT values are encoded as a series of
 base64url-encoded values (some of which may be the empty string)
 separated by period (’.’) characters.

 * Security considerations: See (#Security) of [[this specification
]]

 * Interoperability considerations: n/a

 * Published specification: [[this specification]]

 * Applications that use this media type: Applications using [[this
 specification]] for updated status information of tokens

 * Fragment identifier considerations: n/a

 * Additional information:

 - File extension(s): n/a

 - Macintosh file type code(s): n/a

 * Person & email address to contact for further information:
 Giuseppe De Marco, gi.demarco@innovazione.gov.it

 * Intended usage: COMMON

 * Restrictions on usage: none

 * Author: Giuseppe De Marco, gi.demarco@innovazione.gov.it

 * Change controller: IETF

 * Provisional registration? No

 To indicate that the content is an CWT-based Status List:

 * Type name: application

 * Subtype name: status-attestation+jwt

 * Required parameters: n/a

 * Optional parameters: n/a

 * Encoding considerations: binary

Marco, et al. Expires 20 October 2024 [Page 21]

Internet-Draft OAuth Status Attestations April 2024

 * Security considerations: See (#Security) of [[this specification
]]

 * Interoperability considerations: n/a

 * Published specification: [[this specification]]

 * Applications that use this media type: Applications using [[this
 specification]] for status attestation of tokens and Digital
 Credentials

 * Fragment identifier considerations: n/a

 * Additional information:

 - File extension(s): n/a

 - Macintosh file type code(s): n/a

 * Person & email address to contact for further information:
 Giuseppe De Marco, gi.demarco@innovazione.gov.it

 * Intended usage: COMMON

 * Restrictions on usage: none

 * Author: Giuseppe De Marco, gi.demarco@innovazione.gov.it

 * Change controller: IETF

 * Provisional registration? No

15. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/rfc/rfc7515>.

 [RFC7516] Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",
 RFC 7516, DOI 10.17487/RFC7516, May 2015,
 <https://www.rfc-editor.org/rfc/rfc7516>.

Marco, et al. Expires 20 October 2024 [Page 22]

Internet-Draft OAuth Status Attestations April 2024

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <https://www.rfc-editor.org/rfc/rfc7517>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/rfc/rfc7519>.

 [RFC7800] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
 Possession Key Semantics for JSON Web Tokens (JWTs)",
 RFC 7800, DOI 10.17487/RFC7800, April 2016,
 <https://www.rfc-editor.org/rfc/rfc7800>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC9126] Lodderstedt, T., Campbell, B., Sakimura, N., Tonge, D.,
 and F. Skokan, "OAuth 2.0 Pushed Authorization Requests",
 RFC 9126, DOI 10.17487/RFC9126, September 2021,
 <https://www.rfc-editor.org/rfc/rfc9126>.

Appendix A. Acknowledgments

 We would like to thank:

 * Paul Bastien

 * Emanuele De Cupis

 * Riccardo Iaconelli

 * Victor Näslund

 * Giada Sciarretta

 * Amir Sharif

Appendix B. Document History

 TODO changelog.

Authors’ Addresses

 Giuseppe De Marco
 Dipartimento per la trasformazione digitale
 Email: gi.demarco@innovazione.gov.it

Marco, et al. Expires 20 October 2024 [Page 23]

Internet-Draft OAuth Status Attestations April 2024

 Orie Steele
 Transmute
 Email: orie@transmute.industries

 Francesco Marino
 Istituto Poligrafico e Zecca dello Stato
 Email: fa.marino@ipzs.it

Marco, et al. Expires 20 October 2024 [Page 24]

Network Working Group T. Looker
Internet-Draft MATTR
Intended status: Informational P. Bastian
Expires: 5 September 2024
 C. Bormann
 4 March 2024

 Token Status List
 draft-ietf-oauth-status-list-02

Abstract

 This specification defines status list data structures and processing
 rules for representing the status of tokens secured by JSON Object
 Signing and Encryption (JOSE) or CBOR Object Signing and
 Encryption(COSE), such as JSON Web Tokens (JWTs), CBOR Web Tokens
 (CWTs) and ISO mdoc. The status list token data structures
 themselves are also represented as JWTs or CWTs.

About This Document

 This note is to be removed before publishing as an RFC.

 The latest revision of this draft can be found at
 https://vcstuff.github.io/draft-ietf-oauth-status-list/draft-ietf-
 oauth-status-list.html. Status information for this document may be
 found at https://datatracker.ietf.org/doc/draft-ietf-oauth-status-
 list/.

 Source for this draft and an issue tracker can be found at
 https://github.com/vcstuff/draft-ietf-oauth-status-list.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Looker, et al. Expires 5 September 2024 [Page 1]

Internet-Draft Token Status List March 2024

 This Internet-Draft will expire on 5 September 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Rationale . 4
 1.2. Design Considerations 5
 2. Conventions and Definitions 6
 3. Terminology . 6
 4. Status List . 6
 4.1. Status List in JSON Format 8
 4.2. Status List in CBOR Format 8
 5. Status List Token . 9
 5.1. Status List Token in JWT Format 9
 5.2. Status List Token in CWT Format 11
 6. Referenced Token . 12
 6.1. Status Claim . 12
 6.2. Referenced Token in JWT Format 13
 6.3. Referenced Token in CWT Format 14
 6.4. Referenced Token in other COSE/CBOR Format 15
 7. Status Types . 16
 7.1. Status Types Values 16
 8. Verification and Processing 16
 8.1. Status List Request 16
 8.2. Status List Response 17
 8.3. Caching . 17
 8.4. Validation Rules . 18
 9. Further Examples . 18
 9.1. Status List Token with 2-Bit Status Values in JWT
 format . 18
 10. Security Considerations 19
 10.1. Correct decoding and parsing of the encoded status
 list . 19
 10.2. Cached and Stale status lists 19

Looker, et al. Expires 5 September 2024 [Page 2]

Internet-Draft Token Status List March 2024

 10.3. Authorized access to the Status List 19
 10.4. History . 19
 11. Privacy Considerations 19
 11.1. Limiting issuers observability of token verification . . 19
 11.2. Malicious Issuers 20
 11.3. Unobservability of Relying Parties 20
 11.4. Unlinkability . 21
 11.5. Third Party Hosting 21
 12. Implementation Considerations 21
 12.1. Token Lifecycle . 21
 13. IANA Considerations . 22
 13.1. JSON Web Token Claims Registration 22
 13.1.1. Registry Contents 22
 13.2. JWT Status Mechanism Methods Registry 22
 13.2.1. Registration Template 23
 13.2.2. Initial Registry Contents 23
 13.3. CBOR Web Token Claims Registration 23
 13.3.1. Registry Contents 23
 13.4. CWT Status Mechanism Methods Registry 24
 13.4.1. Registration Template 24
 13.4.2. Initial Registry Contents 25
 13.5. Media Type Registration 25
 14. References . 28
 14.1. Normative References 29
 14.2. Informative References 31
 Acknowledgments . 31
 Document History . 31
 Authors’ Addresses . 33

1. Introduction

 Token formats secured by JOSE [IANA.JOSE] or COSE [RFC9052], such as
 JSON Web Tokens (JWTs) [RFC7519], CBOR Web Tokens (CWTs) [RFC8392]
 and ISO mdoc [ISO.mdoc], have vast possible applications. Some of
 these applications can involve issuing a token whereby certain
 semantics about the token can change over time, which are important
 to be able to communicate to relying parties in an interoperable
 manner, such as whether the token is considered invalidated or
 suspended by its issuer.

 This document defines a Status List and its representations in JSON
 and CBOR formats that describe the individual statuses of multiple
 Referenced Tokens, which themselves are JWTs or CWTs. The statuses
 of all Referenced Tokens are conveyed via a bit array in the Status
 List. Each Referenced Token is allocated an index during issuance
 that represents its position within this bit array. The value of the
 bit(s) at this index correspond to the Referenced Token’s status. A
 Status List may either be provided by an endpoint or be signed and

Looker, et al. Expires 5 September 2024 [Page 3]

Internet-Draft Token Status List March 2024

 embedded into a Status List Token, whereas this document defines its
 representations in JWT and CWT. Status Lists may be composed for
 expressing a range of Status Types. This document defines basic
 Status Types for the most common use cases as well as an
 extensibility mechanism for custom Status Types. The document also
 defines how an issuer of a Referenced Token references a Status List
 (Token).

 An example for the usage of a Status List is to manage the status of
 issued access tokens as defined in section 1.4 of [RFC6749]. Token
 Introspection [RFC7662] defines another way to determine the status
 of an issued access token, but it requires the party trying to
 validate an access tokens status to directly contact the token
 issuer, whereas the mechanism defined in this specification does not
 have this limitation.

 Another possible use case for the Status List is to express the
 status of verifiable credentials (Referenced Tokens) issued by an
 Issuer in the Issuer-Holder-Verifier model [SD-JWT.VC]. The
 following diagram depicts the basic conceptual relationship.

 +-------------------+ +------------------------+
 | | describes status | |
 | Status List +----------------->| Referenced Token |
 | (JSON or CBOR) <------------------+ (JOSE, COSE) |
 | | references | |
 +-------+-----------+ +--------+---------------+
 |
 |embedded in
 v
 +-------------------+
 | |
 | Status List Token |
 | (JWT or CWT) |
 | |
 +-------------------+

1.1. Rationale

 Revocation mechanisms are an essential part for most identity
 ecosystems. In the past, revocation of X.509 TLS certificates has
 been proven difficult. Traditional certificate revocation lists
 (CRLs) have limited scalability; Online Certificate Status Protocol
 (OCSP) has additional privacy risks, since the client is leaking the
 requested website to a third party. OCSP stapling is addressing some
 of these problems at the cost of less up-to-date data. Modern
 approaches use accumulator-based revocation registries and Zero-
 Knowledge-Proofs to accommodate for this privacy gap, but face

Looker, et al. Expires 5 September 2024 [Page 4]

Internet-Draft Token Status List March 2024

 scalability issues again.

 This specification seeks to find a balance between scalability,
 security, and privacy by minimizing the status information to mere
 bits (often a single bit) and compressing the resulting binary data.
 Thereby, a Status List may contain statuses of many thousands or
 millions Referenced Tokens while remaining as small as possible.
 Placing large amounts of Referenced Tokens into the same list also
 enables herd privacy relative to the Issuer.

 This specification establishes the IANA "Status Mechanism Methods"
 registry for status mechanism and registers the members defined by
 this specification. Other specifications can register other members
 used for status retrieval.

1.2. Design Considerations

 The decisions taken in this specification aim to achieve the
 following design goals:

 * the specification shall favor a simple and easy to understand
 concept

 * the specification shall be easy, fast and secure to implement in
 all major programming languages

 * the specification shall be optimized to support the most common
 use cases and avoid unnecessary complexity of corner cases

 * the Status List shall scale up to millions of tokens to support
 large scale government or enterprise use cases

 * the Status List shall enable caching policies and offline support

 * the specification shall support JSON and CBOR based tokens

 * the specification shall not specify key resolution or trust
 frameworks

 * the specification shall design an extension point to convey
 information about the status of a token that can be re-used by
 other mechanisms

Looker, et al. Expires 5 September 2024 [Page 5]

Internet-Draft Token Status List March 2024

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Terminology

 Issuer: An entity that issues the Referenced Token and provides the
 status information of the Referenced Token by serving a Status
 List Token on a public endpoint.

 Relying Party: An entity that relies on the Status List to validate
 the status of the Referenced Token. Also known as Verifier.

 Status List: An object in JSON or CBOR representation containing a
 bit array that lists the statuses of many Referenced Tokens.

 Status List Token: A token in JWT or CWT representation that
 contains a cryptographically secured Status List.

 Referenced Token: A cryptographically secured data structure which
 contains a reference to a Status List or Status List Token. It is
 RECOMMENDED to use JSON [RFC8259] or CBOR [RFC8949] for
 representation of the token and secure it using JSON Object
 Signing as defined in [RFC7515] or CBOR Object Signing and
 Encryption as defined in [RFC9052]. The information from the
 contained Status List may give a Relying Party additional
 information about up-to-date status of the Referenced Token.

4. Status List

 A Status List is a byte array that contains the statuses of many
 Referenced Tokens represented by one or multiple bits. A common
 representation of a Status List is composed by the following
 algorithm:

 1. Each status of a Referenced Token MUST be represented with a bit-
 size of 1,2,4, or 8. Therefore up to 2,4,16, or 256 statuses for
 a Referenced Token are possible, depending on the bit-size. This
 limitation is intended to limit bit manipulation necessary to a
 single byte for every operation and thus keeping implementations
 simpler and less error prone.

Looker, et al. Expires 5 September 2024 [Page 6]

Internet-Draft Token Status List March 2024

 2. The overall Status List is encoded as a byte array. Depending on
 the bit-size, each byte corresponds to 8/(#bit-size) statuses
 (8,4,2, or 1). The status of each Referenced Token is identified
 using the index that maps to one or more specific bits within the
 byte array. The index starts counting at 0 and ends with "size"
 - 1 (being the last valid entry). The bits within an array are
 counted from least significant bit "0" to the most significant
 bit ("7"). All bits of the byte array at a particular index are
 set to a status value.

 3. The byte array is compressed using DEFLATE [RFC1951] with the
 ZLIB [RFC1950] data format. Implementations are RECOMMENDED to
 use the highest compression level available.

 The following example illustrates a Status List that represents the
 statuses of 16 Referenced Tokens, requiring 16 bits (2 bytes) for the
 uncompressed byte array:

 status[0] = 1
 status[1] = 0
 status[2] = 0
 status[3] = 1
 status[4] = 1
 status[5] = 1
 status[6] = 0
 status[7] = 1
 status[8] = 1
 status[9] = 1
 status[10] = 0
 status[11] = 0
 status[12] = 0
 status[13] = 1
 status[14] = 0
 status[15] = 1

 These bits are concatenated:

 byte 0 1 2
 bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+...
 values |1|0|1|1|1|0|0|1| |1|0|1|0|0|0|1|1| |0|...
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+...
 index 7 6 5 4 3 2 1 0 15 ... 10 9 8 23
 _______________/ _______________/
 0xB9 0xA3

Looker, et al. Expires 5 September 2024 [Page 7]

Internet-Draft Token Status List March 2024

4.1. Status List in JSON Format

 This section defines the structure for a JSON-encoded Status List:

 * status_list: REQUIRED. JSON Object that contains a Status List.
 The object contains exactly two claims:

 - bits: REQUIRED. JSON Integer specifying the number of bits per
 Referenced Token in the Status List (lst). The allowed values
 for bits are 1,2,4 and 8.

 - lst: REQUIRED. JSON String that contains the status values for
 all the Referenced Tokens it conveys statuses for. The value
 MUST be the base64url-encoded (as defined in Section 2 of
 [RFC7515]) Status List as specified in Section 4.

 The following example illustrates the JSON representation of the
 Status List:

 byte_array = [0xb9, 0xa3]
 encoded:
 {
 "bits": 1,
 "lst": "eNrbuRgAAhcBXQ"
 }

4.2. Status List in CBOR Format

 This section defines the structure for a CBOR-encoded Status List:

 * The StatusList structure is a map (Major Type 5) and defines the
 following entries:

 - bits: REQUIRED. Unsigned int (Major Type 0) that contains the
 number of bits per Referenced Token in the Status List. The
 allowed values for bits are 1, 2, 4 and 8.

 - lst: REQUIRED. Byte string (Major Type 2) that contains the
 Status List as specified in Section 4.1.

 The following example illustrates the CBOR representation of the
 Status List:

 byte_array = [0xb9, 0xa3]
 encoded:
 a2646269747301636c73744a78dadbb918000217015d

 The following is the CBOR diagnostic output of the example above:

Looker, et al. Expires 5 September 2024 [Page 8]

Internet-Draft Token Status List March 2024

 a2 # map(2)
 64 # string(4)
 62697473 # "bits"
 01 # uint(1)
 63 # string(3)
 6c7374 # "lst"
 4a # bytes(10)
 78dadbb918000217015d # "xÚÛ¹\x18\x00\x02\x17\x01]"

5. Status List Token

 A Status List Token embeds the Status List into a token that is
 cryptographically signed and protects the integrity of the Status
 List. This allows for the Status List Token to be hosted by third
 parties or be transferred for offline use cases.

 This section specifies Status List Tokens in JSON Web Token (JWT) and
 CBOR Web Token (CWT) format.

5.1. Status List Token in JWT Format

 The Status List Token MUST be encoded as a "JSON Web Token (JWT)"
 according to [RFC7519].

 The following content applies to the JWT Header:

 * typ: REQUIRED. The JWT type MUST be statuslist+jwt.

 The following content applies to the JWT Claims Set:

 * iss: REQUIRED when also present in the Referenced Token. The iss
 (issuer) claim MUST specify a unique string identifier for the
 entity that issued the Status List Token. In the absence of an
 application profile specifying otherwise, compliant applications
 MUST compare issuer values using the Simple String Comparison
 method defined in Section 6.2.1 of [RFC3986]. The value MUST be
 equal to that of the iss claim contained within the Referenced
 Token.

 * sub: REQUIRED. The sub (subject) claim MUST specify a unique
 string identifier for the Status List Token. The value MUST be
 equal to that of the uri claim contained in the status_list claim
 of the Referenced Token.

 * iat: REQUIRED. The iat (issued at) claim MUST specify the time at
 which the Status List Token was issued.

Looker, et al. Expires 5 September 2024 [Page 9]

Internet-Draft Token Status List March 2024

 * exp: OPTIONAL. The exp (expiration time) claim, if present, MUST
 specify the time at which the Status List Token is considered
 expired by its issuer.

 * ttl: OPTIONAL. The ttl (time to live) claim, if present, MUST
 specify the maximum amount of time, in seconds, that the Status
 List Token can be cached by a consumer before a fresh copy SHOULD
 be retrieved. The value of the claim MUST be a positive number.

 * status_list: REQUIRED. The status_list (status list) claim MUST
 specify the Status List conforming to the rules outlined in
 Section 4.1.

 The following additional rules apply:

 1. The JWT MAY contain other claims.

 2. The JWT MUST be digitally signed using an asymmetric
 cryptographic algorithm. Relying parties MUST reject the JWT if
 it is using a Message Authentication Code (MAC) algorithm.
 Relying parties MUST reject JWTs with an invalid signature.

 3. Relying parties MUST reject JWTs that are not valid in all other
 respects per "JSON Web Token (JWT)" [RFC7519].

 4. Application of additional restrictions and policy are at the
 discretion of the verifying party.

 The following is a non-normative example for a Status List Token in
 JWT format:

 {
 "alg": "ES256",
 "kid": "12",
 "typ": "statuslist+jwt"
 }
 .
 {
 "exp": 2291720170,
 "iat": 1686920170,
 "iss": "https://example.com",
 "status_list": {
 "bits": 1,
 "lst": "eNrbuRgAAhcBXQ"
 },
 "sub": "https://example.com/statuslists/1"
 }

Looker, et al. Expires 5 September 2024 [Page 10]

Internet-Draft Token Status List March 2024

5.2. Status List Token in CWT Format

 The Status List Token MUST be encoded as a "CBOR Web Token (CWT)"
 according to [RFC8392].

 The following content applies to the CWT protected header:

 * 16 TBD (type): REQUIRED. The type of the CWT MUST be
 statuslist+cwt as defined in [CWT.typ].

 The following content applies to the CWT Claims Set:

 * 1 (issuer): REQUIRED. Same definition as iss claim in
 Section 5.1.

 * 2 (subject): REQUIRED. Same definition as sub claim in
 Section 5.1.

 * 6 (issued at): REQUIRED. Same definition as iat claim in
 Section 5.1.

 * 4 (expiration time): OPTIONAL. Same definition as exp claim in
 Section 5.1.

 * 65534 (status list): REQUIRED. The status list claim MUST specify
 the Status List conforming to the rules outlined in Section 4.2.

 The following additional rules apply:

 1. The CWT MAY contain other claims.

 2. The CWT MUST be digitally signed using an asymmetric
 cryptographic algorithm. Relying parties MUST reject the CWT if
 it is using a Message Authentication Code (MAC) algorithm.
 Relying parties MUST reject CWTs with an invalid signature.

 3. Relying parties MUST reject CWTs that are not valid in all other
 respects per "CBOR Web Token (CWT)" [RFC8392].

 4. Application of additional restrictions and policy are at the
 discretion of the verifying party.

 The following is a non-normative example for a Status List Token in
 CWT format (not including the type header yet):

Looker, et al. Expires 5 September 2024 [Page 11]

Internet-Draft Token Status List March 2024

 d28453a20126106e7374617475736c6973742b637774a1044231325860a502782168
 747470733a2f2f6578616d706c652e636f6d2f7374617475736c697374732f310173
 68747470733a2f2f6578616d706c652e636f6d061a648c5bea041a8898dfea19fffe
 56a2646269747301636c73744a78dadbb918000217015d58400f2ca3772e10b09d5d
 6ed56461f7cba1a816c6234072d1bb693db277048e5db5a4e64444492a9b781d6c7a
 c9714db99cc7aadb3812ec90cab7794170bab5b473

 The following is the CBOR diagnostic output of the example above:

d2 # tag(18)
 84 # array(4)
 53 # bytes(19)
 a20126106e7374617475736c # "¢\x01&\x10nstatusl"
 6973742b637774 # "ist+cwt"
 a1 # map(1)
 04 # uint(4)
 42 # bytes(2)
 3132 # "12"
 58 60 # bytes(96)
 a502782168747470733a2f2f # "¥\x02x!https://"
 6578616d706c652e636f6d2f # "example.com/"
 7374617475736c697374732f # "statuslists/"
 31017368747470733a2f2f65 # "1\x01shttps://e"
 78616d706c652e636f6d061a # "xample.com\x06\x1a"
 648c3fca041a8898c3ca19ff # "d\x8c?Ê\x04\x1a\x88\x98ÃÊ\x19ÿ"
 fe56a2646269747301636c73 # "þV¢dbits\x01cls"
 744a78dadbb918000217015d # "tJxÚÛ¹\x18\x00\x02\x17\x01]"
 58 40 # bytes(64)
 3fd60a6d10eb4b4131f1f6c1 # "?Ö\x0am\x10ëKA1ñöÁ"
 2fb365ae27b969e8e8df0b4f # "/³e®’¹ièèß\x0bO"
 4029815b679cb1051c1c9eb3 # "@)\x81[g\x9c±\x05\x1c\x1c\x9e³"
 6aa72f6f17bcfdb5ed443bdf # "j§/o\x17¼ýµíD;ß"
 c2339568ab42949169b413e7 # "Â3\x95h«B\x94\x91i´\x13ç"
 02ae1e6a # "\x02®\x1ej"

6. Referenced Token

6.1. Status Claim

 By including a "status" claim in a Referenced Token, the Issuer is
 referencing a mechanism to retrieve status information about this
 Referenced Token. The claim contains members used to reference to a
 status list as defined in this specification. Other members of the
 "status" object may be defined by other specifications. This is
 analogous to "cnf" claim in Section 3.1 of [RFC7800] in which
 different authenticity confirmation methods can be included.

Looker, et al. Expires 5 September 2024 [Page 12]

Internet-Draft Token Status List March 2024

6.2. Referenced Token in JWT Format

 The Referenced Token MUST be encoded as a "JSON Web Token (JWT)"
 according to [RFC7519].

 The following content applies to the JWT Claims Set:

 * iss: REQUIRED when also present in the Status List Token. The iss
 (issuer) claim MUST specify a unique string identifier for the
 entity that issued the Referenced Token. In the absence of an
 application profile specifying otherwise, compliant applications
 MUST compare issuer values using the Simple String Comparison
 method defined in Section 6.2.1 of [RFC3986]. The value MUST be
 equal to that of the iss claim contained within the referenced
 Status List Token.

 * status: REQUIRED. The status (status) claim MUST specify a JSON
 Object that contains at least one reference to a status mechanism.

 - status_list: REQUIRED when the status list mechanism defined in
 this specification is used. It contains a reference to a
 Status List or Status List Token. The object contains exactly
 two claims:

 o idx: REQUIRED. The idx (index) claim MUST specify an
 Integer that represents the index to check for status
 information in the Status List for the current Referenced
 Token. The value of idx MUST be a non-negative number,
 containing a value of zero or greater.

 o uri: REQUIRED. The uri (URI) claim MUST specify a String
 value that identifies the Status List or Status List Token
 containing the status information for the Referenced Token.
 The value of uri MUST be a URI conforming to [RFC3986].

 Application of additional restrictions and policy are at the
 discretion of the verifying party.

 The following is a non-normative example for a decoded header and
 payload of a Referenced Token:

Looker, et al. Expires 5 September 2024 [Page 13]

Internet-Draft Token Status List March 2024

 {
 "alg": "ES256",
 "kid": "11"
 }
 .
 {
 "iss": "https://example.com",
 "status": {
 "status_list": {
 "idx": 0,
 "uri": "https://example.com/statuslists/1"
 }
 }
 }

6.3. Referenced Token in CWT Format

 The Referenced Token MUST be encoded as a "COSE Web Token (CWT)"
 object according to [RFC8392].

 The following content applies to the CWT Claims Set:

 * 1 (issuer): REQUIRED. Same definition as iss claim in
 Section 6.2.

 * 65535 (status): REQUIRED. The status claim is encoded as a Status
 CBOR structure and MUST include at least one data item that refers
 to a status mechanism. Each data item in the Status CBOR
 structure comprises a key-value pair, where the key must be a CBOR
 text string (Major Type 3) specifying the identifier of the status
 mechanism, and the corresponding value defines its contents. This
 specification defines the following data items:

 - status_list (status list): REQUIRED when the status list
 mechanism defined in this specification is used. It has the
 same definition as the status_list claim in Section 6.2 but
 MUST be encoded as a StatusListInfo CBOR structure with the
 following fields:

 o idx: REQUIRED. Same definition as idx claim in Section 6.2.

 o uri: REQUIRED. Same definition as uri claim in Section 6.2.

 Application of additional restrictions and policy are at the
 discretion of the verifying party.

 The following is a non-normative example for a decoded payload of a
 Referenced Token:

Looker, et al. Expires 5 September 2024 [Page 14]

Internet-Draft Token Status List March 2024

 18(
 [
 / protected / << {
 / alg / 1: -7 / ES256 /
 } >>,
 / unprotected / {
 / kid / 4: h’3132’ / ’13’ /
 },
 / payload / << {
 / iss / 1: "https://example.com",
 / status / 65535: {
 "status_list": {
 "idx": "0",
 "uri": "https://example.com/statuslists/1"
 }
 }
 } >>,
 / signature / h’...’
]
)

6.4. Referenced Token in other COSE/CBOR Format

 The Referenced Token MUST be encoded as a COSE_Sign1 or COSE_Sign
 CBOR structure as defined in "CBOR Object Signing and Encryption
 (COSE)" [RFC9052].

 It is required to encode the status mechanisms referred to in the
 Referenced Token using the Status CBOR structure defined in
 Section 6.3.

 It is RECOMMENDED to use status for the label of the field that
 contains the Status CBOR structure.

 Application of additional restrictions and policy are at the
 discretion of the verifying party.

 The following is a non-normative example for a decoded payload of a
 Referenced Token:

 TBD: example

Looker, et al. Expires 5 September 2024 [Page 15]

Internet-Draft Token Status List March 2024

7. Status Types

 This document defines potential statuses of Referenced Tokens as
 Status Type values. If the Status List contains more than one bit
 per token (as defined by "bits" in the Status List), then the whole
 value of bits MUST describe one value. A Status List can not
 represent multiple statuses per Referenced Token.

 The registry in this document describes the basic Status Type values
 required for the most common use cases. Additional values may
 defined for particular use cases.

7.1. Status Types Values

 A status describes the state, mode, condition or stage of an entity
 that is described by the Status List. Status Types MUST be numeric
 values between 0 and 255. Status types described by this
 specification comprise:

 * 0x00 - "VALID" - The status of the Token is valid, correct or
 legal.

 * 0x01 - "INVALID" - The status of the Token is revoked, annulled,
 taken back, recalled or cancelled. This state is irreversible.

 * 0x02 - "SUSPENDED" - The status of the Token is temporarily
 invalid, hanging, debarred from privilege. This state is
 reversible.

 The issuer of the Status List MUST choose an adequate bits (bit size)
 to be able to describe the required Status Types for the application.

 The processing rules for JWT or CWT precede any evaluation of a
 Referenced Token’s status. For example, if a token is evaluated as
 being expired through the "exp" (Expiration Time) but also has a
 status of 0x00 ("VALID"), the token is considered expired.

8. Verification and Processing

8.1. Status List Request

 To obtain the Status List or Status List Token, the Relying Party
 MUST send a HTTP GET request to the Status List Endpoint.
 Communication with the Status List Endpoint MUST utilize TLS. Which
 version(s) should be implemented will vary over time. A TLS server
 certificate check MUST be performed as defined in Section 5 and 6 of
 [RFC6125].

Looker, et al. Expires 5 September 2024 [Page 16]

Internet-Draft Token Status List March 2024

 The Relying Party SHOULD send the following Accept-Header to indicate
 the requested response type:

 * "application/statuslist+json" for Status List in JSON format

 * "application/statuslist+jwt" for Status List in JWT format

 * "application/statuslist+cbor" for Status List in CBOR format

 * "application/statuslist+cwt" for Status List in CWT format

 If the Relying Party does not send an Accept Header, the response
 type is assumed to be known implicit or out-of-band.

8.2. Status List Response

 In the successful response, the Status List Provider MUST use the
 following content-type:

 * "application/statuslist+json" for Status List in JSON format

 * "application/statuslist+jwt" for Status List in JWT format

 * "application/statuslist+cbor" for Status List in CBOR format

 * "application/statuslist+cwt" for Status List in CWT format

 In the case of "application/statuslist+json", the response MUST be of
 type JSON and follow the rules of Section 4.1. In the case of
 "application/statuslist+jwt", the response MUST be of type JWT and
 follow the rules of Section 5.1. In the case of "application/
 statuslist+cbor", the response MUST be of type CBOR and follow the
 rules of Section 4.2. In the case of "application/statuslist+cwt",
 the response MUST be of type CWT and follow the rules of Section 5.2.

 The HTTP response SHOULD use gzip Content-Encoding as defined in
 [RFC9110].

8.3. Caching

 If caching is required (e.g., to enable the use of alternative
 mechanisms for hosting, like Content Delivery Networks), the control
 of the caching mechanism SHOULD be implemented using the standard
 HTTP Cache-Control as defined in [RFC9111].

Looker, et al. Expires 5 September 2024 [Page 17]

Internet-Draft Token Status List March 2024

8.4. Validation Rules

 TBD

9. Further Examples

9.1. Status List Token with 2-Bit Status Values in JWT format

 In this example, the Status List additionally includes the Status
 Type "SUSPENDED". As the Status Type value for "SUSPENDED" is 0x02
 and does not fit into 1 bit, the "bits" is required to be 2.

 This example Status List represents the status of 12 Referenced
 Tokens, requiring 24 bits (3 bytes) of status.

 status[0] = 1
 status[1] = 2
 status[2] = 0
 status[3] = 3
 status[4] = 0
 status[5] = 1
 status[6] = 0
 status[7] = 1
 status[8] = 1
 status[9] = 2
 status[10] = 3
 status[11] = 3

 These bits are concatenated:

 byte 0 1 2
 bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 values |1|1|0|0|1|0|0|1| |0|1|0|0|0|1|0|0| |1|1|1|1|1|0|0|1|
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
 \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ /
 status 3 0 2 1 1 0 1 0 3 3 2 1
 index 3 2 1 0 7 6 5 4 11 10 9 8
 ___________/ ___________/ ___________/
 0xC9 0x44 0xF9

 Resulting in the byte array and compressed/base64url encoded status
 list:

Looker, et al. Expires 5 September 2024 [Page 18]

Internet-Draft Token Status List March 2024

 byte_array = [0xc9, 0x44, 0xf9]
 encoded:
 {
 "bits": 2,
 "lst": "eNo76fITAAPfAgc"
 }

10. Security Considerations

10.1. Correct decoding and parsing of the encoded status list

 TODO elaborate on risks of incorrect parsing/decoding leading to
 erroneous status data

10.2. Cached and Stale status lists

 When consumers or verifiers of the Status List fetch the data, they
 need to be aware of its up-to-date status. The ’ttl’ (time-to-live)
 claim in the Status List Token provides one mechanism for setting a
 maximum cache time for the fetched data. This property permits
 distribution of a status list to a CDN or other distribution
 mechanism while giving guidance to consumers of the status list on
 how often they need to fetch a fresh copy of the status list even if
 that status list is not expired.

10.3. Authorized access to the Status List

 TODO elaborate on authorization mechanisms preventing misuse and
 profiling as described in privacy section

10.4. History

 TODO elaborate on status list only providing the up-to date/latest
 status, no historical data, may be provided by the underlying hosting
 architecture

11. Privacy Considerations

11.1. Limiting issuers observability of token verification

 The main privacy consideration for a Status List, especially in the
 context of the Issuer-Holder-Verifier model [SD-JWT.VC], is to
 prevent the Issuer from tracking the usage of the Referenced Token
 when the status is being checked. If an Issuer offers status
 information by referencing a specific token, this would enable him to
 create a profile for the issued token by correlating the date and
 identity of Relying Parties, that are requesting the status.

Looker, et al. Expires 5 September 2024 [Page 19]

Internet-Draft Token Status List March 2024

 The Status List approaches these privacy implications by integrating
 the status information of many Referenced Tokens into the same list.
 Therefore, the Issuer does not learn for which Referenced Token the
 Relying Party is requesting the Status List. The privacy of the
 Holder is protected by the anonymity within the set of Referenced
 Tokens in the Status List, also called herd privacy. This limits the
 possibilities of tracking by the Issuer.

 The herd privacy is depending on the number of entities within the
 Status List called its size. A larger size results in better privacy
 but also impacts the performance as more data has to be transferred
 to read the Status List.

11.2. Malicious Issuers

 A malicious Issuer could bypass the privacy benefits of the herd
 privacy by generating a unique Status List for every Referenced
 Token. By these means, he could maintain a mapping between
 Referenced Tokens and Status Lists and thus track the usage of
 Referenced Tokens by utilizing this mapping for the incoming
 requests. This malicious behaviour could be detected by Relying
 Parties that request large amounts of Referenced Tokens by comparing
 the number of different Status Lists and their sizes.

11.3. Unobservability of Relying Parties

 Once the Relying Party receives the Referenced Token, this enables
 him to request the Status List to validate its status through the
 provided uri parameter and look up the corresponding index. However,
 the Relying Party may persistently store the uri and index of the
 Referenced Token to request the Status List again at a later time.
 By doing so regularly, the Relying Party may create a profile of the
 Referenced Token’s validity status. This behaviour may be intended
 as a feature, e.g. for a KYC process that requires regular validity
 checks, but might also be abused in cases where this is not intended
 and unknown to the Holder, e.g. profiling the suspension of a driving
 license or checking the employment status of an employee credential.

 This behaviour could be mitigated by: - adding authorization rules to
 the Status List, see Section 10.3. - regular re-issuance of the
 Referenced Token, see Section 12.1.

Looker, et al. Expires 5 September 2024 [Page 20]

Internet-Draft Token Status List March 2024

11.4. Unlinkability

 Colluding Issuers and a Relying Parties have the possibility to link
 two transactions, as the tuple of uri and index inside the Referenced
 Token are unique and therefore traceable data. By comparing the
 status claims of received Referenced Tokens, two colluding Relying
 Parties could determine that they have interacted with the same user
 or an Issuer could trace the usage of its issued Referenced Token by
 colluding with various Relying Parties. It is therefore recommended
 to use Status Lists for Referenced Token formats that have similar
 unlinkability properties.

 To avoid privacy risks for colluding Relying Parties, it is
 RECOMMENDED that Issuers use batch issuance to issue multiple tokens,
 see Section 12.1.

 To avoid further correlatable information by the values of uri and
 index, Issuers are RECOMMENDED to:

 * choose non-sequential, pseudo-random or random indices

 * use decoy or dead entries to obfuscate the real number of
 Referenced Tokens within a Status List

 * choose to deploy and utilize multiple Status Lists simultaneously

11.5. Third Party Hosting

 TODO elaborate on increased privacy if the status list is hosted by a
 third party instead of the issuer reducing tracking possibilities
 TODO evaluate definition of Status List Provider? An entity that
 hosts the Status List as a resource for potential Relying Parties.
 The Status List Provider may be the issuer of the Status List but may
 also be outsourced to a trusted third party.

12. Implementation Considerations

12.1. Token Lifecycle

 The lifetime of a Status List (and the Status List Token) depends on
 the lifetime of its Referenced Tokens. Once all Referenced Tokens
 are expired, the Issuer may stop serving the Status List (and the
 Status List Token).

 Referenced Tokens may be regularly re-issued to increase security or
 to mitigate linkability and prevent tracking by Relying Parties. In
 this case, every Referenced Token MUST have a fresh Status List
 entry.

Looker, et al. Expires 5 September 2024 [Page 21]

Internet-Draft Token Status List March 2024

 Referenced Tokens may also be issued in batches, such that Holders
 can use individual tokens for every transaction. In this case, every
 Referenced Token MUST have a dedicated Status List entry. Revoking
 batch issued Referenced Tokens might reveal this correlation later
 on.

13. IANA Considerations

13.1. JSON Web Token Claims Registration

 This specification requests registration of the following Claims in
 the IANA "JSON Web Token Claims" registry [IANA.JWT] established by
 [RFC7519].

13.1.1. Registry Contents

 * Claim Name: status

 * Claim Description: Reference to a status or validity mechanism
 containing up-to-date status information on the JWT.

 * Change Controller: IETF

 * Specification Document(s): Section 6.1 of this specification

 * Claim Name: status_list

 * Claim Description: A status list containing up-to-date status
 information on multiple other JWTs encoded as a bitarray.

 * Change Controller: IETF

 * Specification Document(s): Section 5.1 of this specification

 * Claim Name: ttl

 * Claim Description: Time to Live

 * Change Controller: IETF

 * Specification Document(s): Section 5.1 of this specification

13.2. JWT Status Mechanism Methods Registry

 This specification establishes the IANA "Status Mechanism Methods"
 registry for JWT "status" member values. The registry records the
 status mechanism method member and a reference to the specification
 that defines it.

Looker, et al. Expires 5 September 2024 [Page 22]

Internet-Draft Token Status List March 2024

13.2.1. Registration Template

 Status Method Value:

 The name requested (e.g., "status_list"). The name is case
 sensitive. Names may not match other registered names in a case-
 insensitive manner unless the Designated Experts state that there
 is a compelling reason to allow an exception.

 Status Method Description:

 Brief description of the status mechanism method.

 Change Controller:

 For Standards Track RFCs, list the "IESG". For others, give the
 name of the responsible party. Other details (e.g., postal
 address, email address, home page URI) may also be included.

 Specification Document(s):

 Reference to the document or documents that specify the parameter,
 preferably including URIs that can be used to retrieve copies of
 the documents. An indication of the relevant sections may also be
 included but is not required.

13.2.2. Initial Registry Contents

 * Status Method Value: status_list

 * Status Method Description: A status list containing up-to-date
 status information on multiple other JWTs encoded as a bitarray.

 * Change Controller: IETF

 * Specification Document(s): Section 6.2 of this specification

13.3. CBOR Web Token Claims Registration

 This specification requests registration of the following Claims in
 the IANA "CBOR Web Token (CWT) Claims" registry [IANA.CWT]
 established by [RFC8392].

13.3.1. Registry Contents

 * Claim Name: status

Looker, et al. Expires 5 September 2024 [Page 23]

Internet-Draft Token Status List March 2024

 * Claim Description: Reference to a status or validity mechanism
 containing up-to-date status information on the CWT.

 * Change Controller: IETF

 * Specification Document(s): Section 6.1 of this specification

 * Claim Name: status_list

 * Claim Description: A status list containing up-to-date status
 information on multiple other CWTs encoded as a bitarray.

 * Change Controller: IETF

 * Specification Document(s): Section 5.2 of this specification

13.4. CWT Status Mechanism Methods Registry

 This specification establishes the IANA "Status Mechanism Methods"
 registry for CWT "status" member values. The registry records the
 status mechanism method member and a reference to the specification
 that defines it.

13.4.1. Registration Template

 Status Method Value:

 The name requested (e.g., "status_list"). The name is case
 sensitive. Names may not match other registered names in a case-
 insensitive manner unless the Designated Experts state that there
 is a compelling reason to allow an exception.

 Status Method Description:

 Brief description of the status mechanism method.

 Change Controller:

 For Standards Track RFCs, list the "IESG". For others, give the
 name of the responsible party. Other details (e.g., postal
 address, email address, home page URI) may also be included.

 Specification Document(s):

 Reference to the document or documents that specify the parameter,
 preferably including URIs that can be used to retrieve copies of
 the documents. An indication of the relevant sections may also be
 included but is not required.

Looker, et al. Expires 5 September 2024 [Page 24]

Internet-Draft Token Status List March 2024

13.4.2. Initial Registry Contents

 * Status Method Value: status_list

 * Status Method Description: A status list containing up-to-date
 status information on multiple other CWTs encoded as a bitarray.

 * Change Controller: IETF

 * Specification Document(s): Section 6.3 of this specification

13.5. Media Type Registration

 This section requests registration of the following media types
 [RFC2046] in the "Media Types" registry [IANA.MediaTypes] in the
 manner described in [RFC6838].

 To indicate that the content is an JSON-based Status List:

 * Type name: application

 * Subtype name: statuslist+json

 * Required parameters: n/a

 * Optional parameters: n/a

 * Encoding considerations: binary; A JSON-based Status List is a
 JSON Object.

 * Security considerations: See (#Security) of [this specification]

 * Interoperability considerations: n/a

 * Published specification: [this specification]

 * Applications that use this media type: Applications using [this
 specification] for updated status information of tokens

 * Fragment identifier considerations: n/a

 * Additional information:

 - File extension(s): n/a

 - Macintosh file type code(s): n/a

Looker, et al. Expires 5 September 2024 [Page 25]

Internet-Draft Token Status List March 2024

 * Person & email address to contact for further information: Paul
 Bastian, paul.bastian@posteo.de

 * Intended usage: COMMON

 * Restrictions on usage: none

 * Author: Paul Bastian, paul.bastian@posteo.de

 * Change controller: IETF

 * Provisional registration? No

 To indicate that the content is an JWT-based Status List:

 * Type name: application

 * Subtype name: statuslist+jwt

 * Required parameters: n/a

 * Optional parameters: n/a

 * Encoding considerations: binary; A JWT-based Status List is a JWT;
 JWT values are encoded as a series of base64url-encoded values
 (some of which may be the empty string) separated by period (’.’)
 characters.

 * Security considerations: See (#Security) of [this specification]

 * Interoperability considerations: n/a

 * Published specification: [this specification]

 * Applications that use this media type: Applications using [this
 specification] for updated status information of tokens

 * Fragment identifier considerations: n/a

 * Additional information:

 - File extension(s): n/a

 - Macintosh file type code(s): n/a

 * Person & email address to contact for further information: Paul
 Bastian, paul.bastian@posteo.de

Looker, et al. Expires 5 September 2024 [Page 26]

Internet-Draft Token Status List March 2024

 * Intended usage: COMMON

 * Restrictions on usage: none

 * Author: Paul Bastian, paul.bastian@posteo.de

 * Change controller: IETF

 * Provisional registration? No

 To indicate that the content is an CBOR-based Status List:

 * Type name: application

 * Subtype name: statuslist+cbor

 * Required parameters: n/a

 * Optional parameters: n/a

 * Encoding considerations: binary; A CBOR-based Status List is a
 CBOR Object.

 * Security considerations: See (#Security) of [this specification]

 * Interoperability considerations: n/a

 * Published specification: [this specification]

 * Applications that use this media type: Applications using [this
 specification] for updated status information of tokens

 * Fragment identifier considerations: n/a

 * Additional information:

 - File extension(s): n/a

 - Macintosh file type code(s): n/a

 * Person & email address to contact for further information: Paul
 Bastian, paul.bastian@posteo.de

 * Intended usage: COMMON

 * Restrictions on usage: none

 * Author: Paul Bastian, paul.bastian@posteo.de

Looker, et al. Expires 5 September 2024 [Page 27]

Internet-Draft Token Status List March 2024

 * Change controller: IETF

 * Provisional registration? No

 To indicate that the content is an CWT-based Status List:

 * Type name: application

 * Subtype name: statuslist+cwt

 * Required parameters: n/a

 * Optional parameters: n/a

 * Encoding considerations: binary;

 * Security considerations: See (#Security) of [this specification]

 * Interoperability considerations: n/a

 * Published specification: [this specification]

 * Applications that use this media type: Applications using [this
 specification] for updated status information of tokens

 * Fragment identifier considerations: n/a

 * Additional information:

 - File extension(s): n/a

 - Macintosh file type code(s): n/a

 * Person & email address to contact for further information: Paul
 Bastian, paul.bastian@posteo.de

 * Intended usage: COMMON

 * Restrictions on usage: none

 * Author: Paul Bastian, paul.bastian@posteo.de

 * Change controller: IETF

 * Provisional registration? No

14. References

Looker, et al. Expires 5 September 2024 [Page 28]

Internet-Draft Token Status List March 2024

14.1. Normative References

 [CWT.typ] Jones, M. B. and O. Steele, "COSE "typ" (type) Header
 Parameter", Work in Progress, Internet-Draft, draft-ietf-
 cose-typ-header-parameter-03, 26 February 2024,
 <https://datatracker.ietf.org/doc/html/draft-ietf-cose-
 typ-header-parameter-03>.

 [IANA.CWT] IANA, "CBOR Web Token (CWT) Claims", n.d.,
 <https://www.iana.org/assignments/cwt/cwt.xhtml>.

 [IANA.JOSE]
 IANA, "JSON Object Signing and Encryption (JOSE)", n.d.,
 <https://www.iana.org/assignments/jose/jose.xhtml>.

 [IANA.JWT] IANA, "JSON Web Token Claims", n.d.,
 <https://www.iana.org/assignments/jwt/jwt.xhtml>.

 [IANA.MediaTypes]
 IANA, "Media Types", n.d.,
 <https://www.iana.org/assignments/media-types/media-
 types.xhtml>.

 [RFC1950] Deutsch, P. and J. Gailly, "ZLIB Compressed Data Format
 Specification version 3.3", RFC 1950,
 DOI 10.17487/RFC1950, May 1996,
 <https://www.rfc-editor.org/rfc/rfc1950>.

 [RFC1951] Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, DOI 10.17487/RFC1951, May 1996,
 <https://www.rfc-editor.org/rfc/rfc1951>.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 DOI 10.17487/RFC2046, November 1996,
 <https://www.rfc-editor.org/rfc/rfc2046>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/rfc/rfc3986>.

Looker, et al. Expires 5 September 2024 [Page 29]

Internet-Draft Token Status List March 2024

 [RFC6125] Saint-Andre, P. and J. Hodges, "Representation and
 Verification of Domain-Based Application Service Identity
 within Internet Public Key Infrastructure Using X.509
 (PKIX) Certificates in the Context of Transport Layer
 Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
 2011, <https://www.rfc-editor.org/rfc/rfc6125>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/rfc/rfc6838>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/rfc/rfc7515>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/rfc/rfc7519>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/rfc/rfc8259>.

 [RFC8392] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig,
 "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392,
 May 2018, <https://www.rfc-editor.org/rfc/rfc8392>.

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://www.rfc-editor.org/rfc/rfc8949>.

 [RFC9052] Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Structures and Process", STD 96, RFC 9052,
 DOI 10.17487/RFC9052, August 2022,
 <https://www.rfc-editor.org/rfc/rfc9052>.

 [RFC9110] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Semantics", STD 97, RFC 9110,
 DOI 10.17487/RFC9110, June 2022,
 <https://www.rfc-editor.org/rfc/rfc9110>.

Looker, et al. Expires 5 September 2024 [Page 30]

Internet-Draft Token Status List March 2024

 [RFC9111] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Caching", STD 98, RFC 9111,
 DOI 10.17487/RFC9111, June 2022,
 <https://www.rfc-editor.org/rfc/rfc9111>.

14.2. Informative References

 [ISO.mdoc] ISO/IEC JTC 1/SC 17, "ISO/IEC 18013-5:2021 ISO-compliant
 driving licence", n.d..

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/rfc/rfc6749>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
 RFC 7662, DOI 10.17487/RFC7662, October 2015,
 <https://www.rfc-editor.org/rfc/rfc7662>.

 [RFC7800] Jones, M., Bradley, J., and H. Tschofenig, "Proof-of-
 Possession Key Semantics for JSON Web Tokens (JWTs)",
 RFC 7800, DOI 10.17487/RFC7800, April 2016,
 <https://www.rfc-editor.org/rfc/rfc7800>.

 [SD-JWT.VC]
 Terbu, O., Fett, D., and B. Campbell, "SD-JWT-based
 Verifiable Credentials (SD-JWT VC)", Work in Progress,
 Internet-Draft, draft-ietf-oauth-sd-jwt-vc-02, 27 February
 2024, <https://datatracker.ietf.org/doc/html/draft-ietf-
 oauth-sd-jwt-vc-02>.

Acknowledgments

 We would like to thank Brian Campbell, Filip Skokan, Francesco
 Marino, Guiseppe De Marco, Kristina Yasuda, Michael B. Jones, Mike
 Prorock, Oliver Terbu, Orie Steele, Timo Glastra and Torsten
 Lodderstedt

 for their valuable contributions, discussions and feedback to this
 specification.

Document History

 -02

 * add ttl claim to Status List Token to convey caching

 * relax requirements on referenced token

Looker, et al. Expires 5 September 2024 [Page 31]

Internet-Draft Token Status List March 2024

 * clarify Deflate / zlib compression

 * make a reference to the Issuer-Holder-Verifier model of SD-JWT VC

 * add COSE/CWT/CBOR encoding

 -01

 * Rename title of the draft

 * add design consideration to the introduction

 * Change status claim to in referenced token to allow re-use for
 other mechanisms

 * Add IANA Registry for status mechanisms

 * restructure the sections of this document

 * add option to return an unsigned Status List

 * Changing compression from gzip to zlib

 * Change typo in Status List Token sub claim description

 * Add access token as an example use-case

 -00

 * Initial draft after working group adoption

 * update acknowledgments

 * renamed Verifier to Relying Party

 * added IANA consideration

 [draft-ietf-oauth-status-list]

 -01

 * Applied editorial improvements suggested by Michael Jones.

 -00

 * Initial draft

Looker, et al. Expires 5 September 2024 [Page 32]

Internet-Draft Token Status List March 2024

Authors’ Addresses

 Tobias Looker
 MATTR
 Email: tobias.looker@mattr.global

 Paul Bastian
 Email: paul.bastian@posteo.de

 Christian Bormann
 Email: chris.bormann@gmx.de

Looker, et al. Expires 5 September 2024 [Page 33]

Web Authorization Protocol A. Parecki

Internet-Draft Okta

Intended status: Standards Track 21 March 2024

Expires: 22 September 2024

 Global Token Revocation

 draft-parecki-oauth-global-token-revocation-03

Abstract

 Global Token Revocation enables parties such as a security incident

 management tool or an external Identity Provider to send a request to

 an Authorization Server to indicate that it should revoke all of the

 user’s existing tokens and require that the user re-authenticates

 before issuing new tokens.

About This Document

 This note is to be removed before publishing as an RFC.

 The latest revision of this draft can be found at

 https://drafts.aaronpk.com/global-token-revocation/draft-parecki-

 oauth-global-token-revocation.html. Status information for this

 document may be found at https://datatracker.ietf.org/doc/draft-

 parecki-oauth-global-token-revocation/.

 Discussion of this document takes place on the Web Authorization

 Protocol Working Group mailing list (mailto:oauth@ietf.org), which is

 archived at https://mailarchive.ietf.org/arch/browse/oauth/.

 Subscribe at https://www.ietf.org/mailman/listinfo/oauth/.

 Source for this draft and an issue tracker can be found at

 https://github.com/aaronpk/global-token-revocation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

Parecki Expires 22 September 2024 [Page 1]

Internet-Draft Global Token Revocation March 2024

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 22 September 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3

 2. Conventions and Definitions 3

 2.1. Terminology . 3

 2.2. Roles . 4

 3. Token Revocation . 4

 3.1. Revocation Endpoint 4

 3.2. Revocation Request 4

 3.3. Revocation Expectations 6

 3.4. Revocation Response 6

 3.4.1. Successful Response 6

 3.4.2. Error Response 6

 4. Revocation of Access Tokens 7

 5. Authorization Server Metadata 7

 6. Security Considerations 8

 6.1. Authentication of Revocation Request 8

 6.2. Enumeration of User Accounts 8

 6.3. Malicious Authorization Server 9

 7. IANA Considerations . 9

 7.1. OAuth Authorization Server Metadata 9

 8. References . 10

 8.1. Normative References 10

 8.2. Informative References 10

 Appendix A. Relationship to Related Specifications 11

 A.1. RFC7009: Token Revocation 11

 A.2. OpenID Connect Front-Channel Logout 11

Parecki Expires 22 September 2024 [Page 2]

Internet-Draft Global Token Revocation March 2024

 A.3. OpenID Connect Back-Channel Logout 12

 A.4. Shared Signals Framework 12

 Appendix B. Document History 13

 Acknowledgments . 14

 Author’s Address . 14

1. Introduction

 An OAuth Authorization Server issues tokens in response to a user

 authorizing a client. A party external to the OAuth Authorization

 Server may wish to instruct the Authorization Server to revoke all

 tokens belonging to a particular user, and prevent the server from

 issuing new tokens until the user re-authenticates.

 For example, a security incident management tool may detect anomalous

 behaviour on a user’s account, or if the user logged in through an

 enterprise Identity Provider, the Identity Provider may want to

 revoke all of a user’s tokens in the event of a security incident or

 on the employee’s termination.

 This specification describes an API endpoint on an Authorization

 Server that can accept requests from external parties to revoke all

 tokens associated with a given user.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

2.1. Terminology

 This specification uses the terms "Access Token", "Authorization

 Code", "Authorization Endpoint", "Authorization Server" (AS),

 "Client", "Client Authentication", "Client Identifier", "Client

 Secret", "End-User", "Grant Type", "Protected Resource", "Redirection

 URI", "Refresh Token", "Resource Owner", "Resource Server" (RS) and

 "Token Endpoint" defined by [RFC6749], and the terms "OpenID

 Provider" (OP) and "ID Token" defined by [OpenID].

 This specification uses the term "Identity Provider" (IdP) to refer

 to the Authorization Server or OpenID Provider that is used for End-

 User authentication.

 TODO: Replace RFC6749 references with OAuth 2.1

Parecki Expires 22 September 2024 [Page 3]

Internet-Draft Global Token Revocation March 2024

2.2. Roles

 In a typical OAuth deployment, the OAuth client obtains tokens from

 the authorization server when a user logs in and authorizes the

 client. In many cases, the method by which a user logs in at the

 authorization server is through an external identity provider.

 For example, a mobile chat application is an OAuth Client, and

 obtains tokens from its backend server which stores the chat

 messages. The mobile chat backend plays the OAuth roles of "Resource

 Server" and "Authorization Server".

 In some cases, the user will log in to the Authorization Server using

 an external (e.g. enterprise) Identity Provider. In that case, when

 a user logs in to the chat application, the backend server may play

 the role of an OAuth client (or OpenID or SAML relying party) to the

 Identity Provider in a new authorization or authentication flow.

3. Token Revocation

 A revocation request is a POST request to the Global Token Revocation

 endpoint, which starts the process of revoking all tokens for the

 identified subject.

3.1. Revocation Endpoint

 The Global Token Revocation endpoint is a URL at the authorization

 server which accepts HTTP POST requests with parameters in the HTTP

 request message body using the application/json format. The Global

 Token Revocation endpoint URL MUST use the https scheme.

 If the authorization server supports OAuth Server Metadata

 ([RFC8414]), the authorization server SHOULD include the URL of their

 Global Token Revocation endpoint in their authorization server

 metadata document using the global_token_revocation_endpoint

 parameter as defined in Section 5.

 The authorization server MAY alternatively register the endpoint with

 tools that will use it.

3.2. Revocation Request

 The request is a POST request with an application/json body

 containing a single property subject, the value of which is a

 Security Event Token Subject Identifier as defined in "Subject

 Identifiers for Security Event Tokens" [RFC9493].

Parecki Expires 22 September 2024 [Page 4]

Internet-Draft Global Token Revocation March 2024

 In practice, this means the value of subject is a JSON object with a

 property format, and at least one additional property depending on

 the value of format.

 The request MUST also be authenticated, the particular authentication

 method and means by which the authentication is established is out of

 scope of this specification, but may include OAuth 2.0 Bearer Token

 [RFC6750] or a JWT [RFC7523].

 The following example requests that all tokens for a user identified

 by an email address be revoked:

 POST /global-token-revocation

 Host: example.com

 Content-Type: application/json

 Authorization: Bearer f5641763544a7b24b08e4f74045

 {

 "sub_id": {

 "format": "email",

 "email": "user@example.com"

 }

 }

 If the user identifier at the authorization server is known by the

 system making the revocation request, the request can use the "Opaque

 Identifer" format to provide the user identifier:

 POST /global-token-revocation

 Host: example.com

 Content-Type: application/json

 Authorization: Bearer f5641763544a7b24b08e4f74045

 {

 "sub_id": {

 "format": "opaque",

 "id": "e193177dfdc52e3dd03f78c"

 }

 }

 If it is expected that the authorization server knows about the user

 identifier at the IdP, the request can use the "Issuer and Subject

 Identifier" format:

Parecki Expires 22 September 2024 [Page 5]

Internet-Draft Global Token Revocation March 2024

 POST /global-token-revocation

 Host: example.com

 Content-Type: application/json

 Authorization: Bearer f5641763544a7b24b08e4f74045

 {

 "sub_id": {

 "format": "iss_sub",

 "iss": "https://issuer.example.com/",

 "sub": "af19c476f1dc4470fa3d0d9a25"

 }

 }

3.3. Revocation Expectations

 Upon receiving a revocation request, authorizing the request, and

 validating the identified user, the Authorization Server:

 * MUST revoke all active refresh tokens

 * SHOULD invalidate all access tokens, although it is recognized

 that it might not be technically feasible to invalidate access

 tokens (see Section 4 below)

 * MUST re-authenticate the user before issuing new access tokens or

 refresh tokens

3.4. Revocation Response

 This specification indicates success and error conditions by using

 HTTP response codes, and does not define the response body format or

 content.

3.4.1. Successful Response

 To indicate that the request was successful and revocation of the

 requested set of tokens has begun, the server returns an HTTP 204

 response.

3.4.2. Error Response

 The following HTTP response codes can be used to indicate various

 error conditions:

 * *400 Bad Request*: The request was malformed, e.g. an unrecognized

 or unsupported type of subject identifier.

 * *401 Unauthorized*: Authentication provided was invalid.

Parecki Expires 22 September 2024 [Page 6]

Internet-Draft Global Token Revocation March 2024

 * *403 Forbidden*: Insufficient authorization, e.g. missing scopes.

 * *404 User Not Found*: The user indicated by the subject identifier

 was not found.

 * *422 Unable to Process Request*: Unable to log out the user.

4. Revocation of Access Tokens

 OAuth 2.0 allows deployment flexibility with respect to the style of

 access tokens. The access tokens may be self-contained (e.g.

 [RFC9068]) so that a resource server needs no further interaction

 with an authorization server issuing these tokens to perform an

 authorization decision of the client requesting access to a protected

 resource. A system design may, however, instead use access tokens

 that are handles (also known as "reference tokens") referring to

 authorization data stored at the authorization server.

 While these are not the only options, they illustrate the

 implications for revocation. In the latter case of reference tokens,

 the authorization server is able to revoke an access token by

 removing it from storage. In the former case, without storing

 tokens, it may be impossible to revoke tokens without taking

 additional measures. One such measure is to use

 [I-D.ietf-oauth-status-list] to maintain a distributed and easily-

 compressed list of token revocation statuses.

 For this reason, revocation of access tokens is optional in this

 specification, since it may pose too significant of a burden for

 implementers. It is not required to revoke access tokens to be able

 to return a success code to the caller.

5. Authorization Server Metadata

 The following authorization server metadata parameters [RFC8414] are

 introduced to signal the server’s capability and policy with respect

 to Global Token Revocation.

 "global_token_revocation_endpoint": The URL of the authorization

 server’s global token revocation endpoint.

 "global_token_revocation_endpoint_auth_methods_supported": OPTIONAL.

 JSON array containing a list of client authentication methods

 supported by this introspection endpoint. The valid client

 authentication method values are those registered in the IANA

 "OAuth Token Endpoint Authentication Methods" registry

 [IANA.oauth-parameters] or those registered in the IANA "OAuth

 Access Token Types" registry [IANA.oauth-parameters]. (These

Parecki Expires 22 September 2024 [Page 7]

Internet-Draft Global Token Revocation March 2024

 values are and will remain distinct, due to Section 7.2.) If

 omitted, the set of supported authentication methods MUST be

 determined by other means.

6. Security Considerations

6.1. Authentication of Revocation Request

 While Section 3.2 requires that the revocation request is an

 authenticated request, the specifics of the authentication are out of

 scope of this specification.

 Since the revocation request ultimately has wide-reaching effects (a

 user is expected to be logged out of all devices), this presents a

 new Denial of Service attack vector. As such, the authentication

 used for this request SHOULD be narrowly scoped to avoid granting

 unnecessary privileges to the caller.

 For example, if using OAuth Bearer Tokens, the token SHOULD be issued

 with a single scope that enables it to perform the revocation

 request, and no other type of token issued should include this scope.

 If the authorization server is multi-tenant (supports multiple

 customers) through different identity providers, each identity

 provider SHOULD use its own scoped credential that is only authorized

 to revoke tokens for users within the same tenant.

6.2. Enumeration of User Accounts

 Typically, an API that accepts a user identifier and returns

 different statuses depending on whether the user exists would provide

 an attack vector allowing enumeration of user accounts. This

 specification does require a "User Not Found" response, so would

 normally fall under this category. However, requests to the endpoint

 defined by this specification are required to be authenticated, so

 this is not considered a public endpoint.

 If the tool making the request is compromised, and the attacker can

 impersonate the requests from this tool (either by coercing the tool

 to make the request, or by extracting the credentials), then the

 attacker would be able to enumerate user accounts. However, since

 the request is not just testing the presence of a user account, but

 actually revoking the tokens associated with the user if successful,

 this would likely be easily visible in any audit logs as many users’

 tokens would be revoked in a short period of time.

Parecki Expires 22 September 2024 [Page 8]

Internet-Draft Global Token Revocation March 2024

 To mitigate some of the concerns of providing such a powerful API

 endpoint, the users that a particular client can request revocation

 for SHOULD be limited, and the authentication of the request SHOULD

 be used to scope the possible user revocation list to only users

 authorized to the client as described in Section 6.1.

 For example, a multi-tenant identity provider that uses different

 signing keys for users associated with different tenants, can also

 use the same signing keys to authenticate revocation requests, such

 as creating a JWT to use as client authentication as described in

 [RFC7523]. This enables the authorization server receiving the

 request to only accept revocation requests for users that are

 associated with the particular tenant at the identity provider.

6.3. Malicious Authorization Server

 From the point of view of an identity provider that supports

 integrations with multiple downstream applications, there is an

 opportunity for a downstream application to maliciously set up a

 Global Token Revocation endpoint to harvest user identifiers and

 authentication of the revocation requests.

 Similarly as described in Section 6.1 above, each integration SHOULD

 be using separate authentication credentials, and each credential

 SHOULD be scoped as narrowly as possible, such that a malicious

 server that receives this authentication cannot replay it anywhere

 else to perform any actions on other systems.

7. IANA Considerations

7.1. OAuth Authorization Server Metadata

 IANA has (TBD) registered the following values in the IANA "OAuth

 Authorization Server Metadata" registry of [IANA.oauth-parameters]

 established by [RFC8414].

 Metadata Name: global_token_revocation_endpoint

 Metadata Description: URL of the authorization server’s global

 token revocation endpoint.

 Change Controller: IESG

 Specification Document: Section X of [[this specification]]

 Metadata Name:

 global_token_revocation_endpoint_auth_methods_supported

Parecki Expires 22 September 2024 [Page 9]

Internet-Draft Global Token Revocation March 2024

 Metadata Description: OPTIONAL. Indicates the list of client

 authentication methods supported by this endpoint.

 Change Controller: IESG

 Specification Document: Section X of [[this specification]]

8. References

8.1. Normative References

 [IANA.oauth-parameters]

 IANA, "OAuth Parameters",

 <http://www.iana.org/assignments/oauth-parameters>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

 RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/rfc/rfc6749>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC8414] Jones, M., Sakimura, N., and J. Bradley, "OAuth 2.0

 Authorization Server Metadata", RFC 8414,

 DOI 10.17487/RFC8414, June 2018,

 <https://www.rfc-editor.org/rfc/rfc8414>.

 [RFC9493] Backman, A., Ed., Scurtescu, M., and P. Jain, "Subject

 Identifiers for Security Event Tokens", RFC 9493,

 DOI 10.17487/RFC9493, December 2023,

 <https://www.rfc-editor.org/rfc/rfc9493>.

8.2. Informative References

 [I-D.ietf-oauth-status-list]

 Looker, T., Bastian, P., and C. Bormann, "Token Status

 List", Work in Progress, Internet-Draft, draft-ietf-oauth-

 status-list-02, 3 March 2024,

 <https://datatracker.ietf.org/doc/html/draft-ietf-oauth-

 status-list-02>.

Parecki Expires 22 September 2024 [Page 10]

Internet-Draft Global Token Revocation March 2024

 [OpenID] Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and

 C. Mortimore, "OpenID Connect Core 1.0", November 2014,

 <https://openid.net/specs/openid-connect-core-1_0.html>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization

 Framework: Bearer Token Usage", RFC 6750,

 DOI 10.17487/RFC6750, October 2012,

 <https://www.rfc-editor.org/rfc/rfc6750>.

 [RFC7009] Lodderstedt, T., Ed., Dronia, S., and M. Scurtescu, "OAuth

 2.0 Token Revocation", RFC 7009, DOI 10.17487/RFC7009,

 August 2013, <https://www.rfc-editor.org/rfc/rfc7009>.

 [RFC7523] Jones, M., Campbell, B., and C. Mortimore, "JSON Web Token

 (JWT) Profile for OAuth 2.0 Client Authentication and

 Authorization Grants", RFC 7523, DOI 10.17487/RFC7523, May

 2015, <https://www.rfc-editor.org/rfc/rfc7523>.

 [RFC9068] Bertocci, V., "JSON Web Token (JWT) Profile for OAuth 2.0

 Access Tokens", RFC 9068, DOI 10.17487/RFC9068, October

 2021, <https://www.rfc-editor.org/rfc/rfc9068>.

Appendix A. Relationship to Related Specifications

A.1. RFC7009: Token Revocation

 OAuth 2.0 Token Revocation [RFC7009] defines an endpoint for

 authorization servers that an OAuth client can use to notify the

 authorization server that a previously-obtained access or refresh

 token is no longer needed.

 The request is made by the OAuth client. The input to the Token

 Revocation request is the token itself, as well as the client’s own

 authentication credentials.

 This differs from the Global Token Revocation endpoint which does not

 take a token as an input, but instead takes a user identifier as

 input. It is not called by OAuth clients, but is instead called by

 an external party such as a security monitoring tool or an identity

 provider that the user used to authenticate at the authorization

 server.

A.2. OpenID Connect Front-Channel Logout

 OpenID Connect Front-Channel Logout (https://openid.net/specs/openid-

 connect-frontchannel-1_0.html) provides a mechanism for an OpenID

 Provider to log users out of Relying Parties by redirecting the user

 agent.

Parecki Expires 22 September 2024 [Page 11]

Internet-Draft Global Token Revocation March 2024

 While the logout request is the same direction as this draft

 describes, this relies on the redirection of the user agent, so is

 only applicable when the user is actively interacting with the

 application in a web browser.

 The Global Token Revocation request works regardless of whether the

 user is actively using the application, and is also applicable to

 non-web based applications.

A.3. OpenID Connect Back-Channel Logout

 OpenID Connect Back-Channel Logout (https://openid.net/specs/openid-

 connect-backchannel-1_0.html) provides a mechanism for an OpenID

 Provider to log users out of a Relying Party by making a back-channel

 POST request containing the user identifier of the user to log out.

 This is the most similar existing logout specification to Global

 Token Revocation. However, there are still a few key differences

 that make it insufficient for the use cases enabled by Global Token

 Revocation.

 OpenID Connect Back-Channel Logout requires Relying Parties to clear

 state of any sessions for the user, but doesn’t mention anything

 about access tokens. It also says that refresh tokens issued with

 the offline_access scope "SHOULD NOT be revoked". This is a

 concretely different outcome than is described by Global Token

 Revocation, which requires the revocation of all refresh tokens for

 the user regardless of whether the refresh token was issued with the

 offline_access scope.

 Additionally, OpenID Connect Back-Channel Logout assumes that the

 Relying Party implements OpenID Connect, which creates implementation

 challenges to use it when the Relying Party actually integrates with

 the identity provider using other specifications such as SAML.

 Global Token Revocation works regardless of the protocol that the

 user uses to authenticate, so works equally well with OpenID Connect

 and SAML integrations.

A.4. Shared Signals Framework

 The Shared Signals Framework at the OpenID Foundation provides two

 specifications that have functionality related to session and token

 revocation.

 Continuous Access Evaluation Profile (CAEP)

 (https://openid.net/specs/openid-caep-specification-1_0.html) defines

 several event types that can be sent between cooperating parties. In

Parecki Expires 22 September 2024 [Page 12]

Internet-Draft Global Token Revocation March 2024

 particular, the "Session Revoked" event can be sent from an identity

 provider to an authorization server when the user’s session at the

 identity provider was revoked. The main difference between this and

 the Global Token Revocation request is that the CAEP event is a

 signal that may or may not be acted upon by the receiver, whereas the

 Global Token Revocation request is a command that has a defined list

 of expected outcomes.

 Risk Incident Sharing and Coordination (RISC)

 (https://openid.net/specs/openid-risc-profile-specification-1_0.html)

 defines events that have somewhat stronger defined meanings compared

 to CAEP. In particular, the "Account Disabled" event has clear

 meaning and strongly implies that a receiver should also disable the

 specified account. However, RISC also has a mechanism for a user to

 opt out of sending events for their account, so it does not provide

 the same level of assurance as a Global Token Revocation request.

 Lastly, it is more complex to set up a receiver for CAEP and RISC

 events compared to a receiver for the Global Token Revocation

 request, so if the receiver is only interested in supporting the

 revocation use cases, it is much simpler to support the single POST

 request described in this draft.

Appendix B. Document History

 ((To be removed from the final specification))

 -03

 * Renamed property from subject to sub_id for consistency with JWT

 claim name defined in RFC9493

 * Added reference to draft-ietf-oauth-status-list

 * Added additional security considerations for authentication of the

 revocation request and malicious authorization servers

 -02

 * Added security consideration around enumeration of user accounts

 * Added an appendix describing the differences between this and

 related logout specifications

 -01

 * Clarified revocation expectations

Parecki Expires 22 September 2024 [Page 13]

Internet-Draft Global Token Revocation March 2024

 * Better definition of endpoint

 * Added section defining endpoint in Authorization Server Metadata

 -00

 * Initial Draft

Acknowledgments

 The authors would like to thank the following people for their

 contributions and reviews of this specification: Apoorva Deshpande,

 George Fletcher, Karl McGuinness, Mike Jones.

Author’s Address

 Aaron Parecki

 Okta

 Email: aaron@parecki.com

 URI: https://aaronparecki.com

Parecki Expires 22 September 2024 [Page 14]

	draft-demarco-oauth-status-attestations-01
	draft-ietf-oauth-status-list-02
	draft-parecki-oauth-global-token-revocation-03

